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Plan:

• Symplectic Monge-Ampère equations. Equivalence group. Integrability

• Linearisability of symplectic Monge-Ampère equations in 2D

• Linearisability of integrable symplectic Monge-Ampère equations in 3D

• Symplectic Monge-Ampère equations in 4D. Necessary conditions for

integrability. Classification. Geometry
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Symplectic Monge-Ampère equations
Let U = (uij) be the Hessian matrix of a function u(x1, ..., xn). Symplectic

Monge-Ampère equations are linear combinations of all possible minors of U

Examples:

first heavenly equation u13u24 − u14u23 = 1

second heavenly equation u13 + u24 + u11u22 − u212 = 0

Husain equation u11 + u22 + u13u24 − u14u23 = 0

6D heavenly equation u15 + u26 + u13u24 − u14u23 = 0

Special Lagrangian 3− folds Hess u = 4u
Affine spheres Hess u = 1

Equivalence group Sp(2n) acts by linear transformations of x1, ..., xn, u1, ..., un

Integrability? Classification? Geometry?
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Special Lagrangian 3-folds
Consider the space C3 with coordinates z1, z2, z3 (zk = xk + iuk)

Symplectic form ω = du1 ∧ dx1 + du2 ∧ dx2 + du3 ∧ dx3

Holomorphic volume form Ω = dz1 ∧ dz2 ∧ dz3

ImΩ = −du1∧du2∧du3+du1∧dx2∧dx3+dx1∧du2∧dx3+dx1∧dx2∧du3

Special Lagrangian 3-folds are specified by the equations ω = Im Ω = 0

In general: symplectic space R2n with coordinates x1, ..., xn, u1, ..., un

Symplectic form ω = du1 ∧ dx1 + ...+ dun ∧ dxn

Constant coefficient differential n-form Φ in dxk, duk

Symplectic Monge-Ampère equations are specified by the equations ω = Φ = 0

Manifestly Sp(2n) invariant
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Integrability: the method of hydrodynamic reductions
Applies to quasilinear equations

A(u)ux +B(u)uy + C(u)ut = 0

Consists of seeking N-phase solutions

u = u(R1, ..., RN )

The phases Ri(x, y, t) are required to satisfy a pair of commuting equations

Riy = µi(R)Rix, Rit = λi(R)Rix

Commutativity conditions: ∂jµ
i

µj−µi =
∂jλ

i

λj−λi

Definition

A quasilinear system is said to be integrable if, for any number of phases N, it

possesses infinitely many hydrodynamic reductions parametrized by N arbitrary

functions of one variable.
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Example of dKP
uxt −

1

2
u2xx = uyy

First order (hydrodynamic) form, set v = uxx, w = uxy :

vt − vvx = wy, vy = wx

N -phase solutions: v = v(R1, ..., RN ), w = w(R1, ..., RN ) where

Riy = µi(R)Rix, Rit = λi(R)Rix

Then

∂iw = µi∂iv, λi = v + (µi)2

Equations for v(R) and µi(R) (Gibbons-Tsarev system):

∂jµ
i =

∂jv

µj − µi
, ∂i∂jv = 2

∂iv∂jv

(µj − µi)2

In involution! General solution depends on N arbitrary functions of one variable.
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Generalized dKP
uxt − f(uxx) = uyy

First order (hydrodynamic) form, set v = uxx, w = uxy :

vt − f(v)vx = wy, vy = wx

N -phase solutions: v = v(R1, ..., RN ), w = w(R1, ..., RN ) where

Riy = µi(R)Rix, Rit = λi(R)Rix

Then

∂iw = µi∂iv, λi = f ′(v) + (µi)2

Generalized Gibbons-Tsarev system:

∂jµ
i = f ′′(v)

∂jv

µj − µi
, ∂i∂jv = 2f ′′(v)

∂iv∂jv

(µj − µi)2

Involutivity ←→ f ′′′ = 0
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Transformation to quasilinear form
2D Monge-Ampère equation

u11u22 − u212 = 1

Set v = u11, w = u12. Then u22 = (1 + w2)/v, and we get

v2 = w1, w2 =
(
(1 + w2)/v

)
1

3D Monge-Ampère equation

u11u23 − u12u13 = 1

Set v = u11, w = u12, r = u13. Then u23 = (1 + wr)/v, and we get

v2 = w1, v3 = r1, w3 = r2, w3 = ((1 + wr)/v)1
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Symplectic Monge-Ampère equations in 2D
Hessian matrix

U =

 u11 u12

u12 u22


Symplectic Monge-Ampère equations are of the form

M2 +M1 +M0 = 0

Explicitly,

ε(u11u22 − u212) + au11 + bu12 + cu22 + d = 0

Any such equation is linearisable by a transformation from Sp(4)
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Geometry in 2D
Symplectic space with coordinates x1, x2, u1, u2. Lagrangian planes form the

Lagrangian Grassmannian Λ3 u1

u2

 =

 u11 u12

u12 u22

 x1

x2



Plücker embedding of Λ3 in P 4 is (1 : u11 : u12 : u22 : u11u22 − u212)

Symplectic Monge-Ampère equations←→ hyperplanes in P 4
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Symplectic Monge-Ampère equations in 3D
Hessian matrix

U =


u11 u12 u13

u12 u22 u23

u13 u23 u33


Symplectic Monge-Ampère equations are of the form

M3 +M2 +M1 +M0 = 0

In 3D there exist three essentially different canonical forms modulo the equivalence

group Sp(6) (Lychagin, Rubtsov, Chekalov, Banos):

u11 = u22 + u33, Hess u = 4u, Hess u = 1

Integrability←→ linearisability (not true in dim 4 and higher).
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Geometry in 3D
Symplectic space with coordinates x1, x2, x3, u1, u2, u3. Lagrangian planes form

the Lagrangian Grassmannian Λ6

Plücker embedding of Λ6 in P 13

Integrable symplectic Monge-Ampère equations←→ hyperplanes
tangential to Λ6 ⊂ P 13
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Symplectic Monge-Ampère equations in 4D
Consider a symplectic Monge-Ampère equation in 4D for u(x1, x2, x3, x4) and

take its traveling wave reduction to 3D,

u = u(x1 + αx4, x2 + βx4, x3 + γx4) +Q(x, x),

where Q(x, x) is an arbitrary quadratic form.

Integrability in 4D←→ linearisability of all traveling wave reductions
to 3D

In particular, all traveling wave reductions of the first heavenly equation

u13u24 − u14u23 = 1 are linearisable.
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Classification of integrable equations in 4D

linear wave u11 − u22 − u33 − u44 = 0

first heavenly u13u24 − u14u23 = 1

second heavenly u13 + u24 + u11u22 − u212 = 0

modified heavenly u13 = u12u44 − u14u24
Husain u11 + u22 + u13u24 − u14u23 = 0

general heavenly αu12u34 + βu13u24 + γu14u23 = 0, α+ β + γ = 0

Conjecture

In dimensions D ≥ 4, any integrable equation of the form
F (uij) = 0 is necessarily of the symplectic Monge-Ampère type

Not true in 3D: take the dKP equation uxt − 1
2u

2
xx = uyy
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Geometry in 4D
Symplectic space with coordinates x1, x2, x3, x4, u1, u2, u3, u4. Lagrangian

planes form the Lagrangian Grassmannian Λ10

Plücker embedding of Λ10 in P 41 is covered by a 7-parameter family of Λ6

Integrable symplectic Monge-Ampère equations←→ hyperplanes
tangential to Λ10 ⊂ P 41 along a four-dimensional subvariety X4

which meets all Λ6 ⊂ P 41
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