Twistor actions, grassmannians and correlahedra

Lionel Mason

The Mathematical Institute, Oxford
lmason@maths.ox.ac.uk

Canterbury 11/1/2016: Total Positivity

review with Adamo, Bullimore \& Skinner 1104.2890, \& work with Lipstein arxiv:1212.6228, 1307.1443, more recently with Eden, Heslop, Agarwala.
[Also. work by Alday, Arkani-Hamed, Cachazo, Caron-Huot, Drummond, Heslop, Korchemsky, Maldacena, Sokatchev, Trnka. (Annecy, Oxford, Perimeter and Princeton IAS).]

Twistors, amplitudes, Wilson loops \& 'hedra

Background [Penrose,Boels, M, Skinner, Adamo, Bullimore...]:

- Twistor space $\mathbb{C P}^{3 \mid 4} \leftrightarrow$ space-time; Klein correspondence.
- $N=4$ Super Yang-Mills has twistor action in twistor space.
- Axial gauge Feynman diagrams \sim 'MHV diagrams'. for amplitudes, Wilson loops \& Correlators.
- Planar Wilson-loop/amplitude duality is planar duality for MHV diagrams.
- Super Amplitude/Correlator/Wilson-loop triality.

Focus of this talk [with Lipstein, Agarwala, Eden \& Heslop]:

- Twistor Feynman rules give grassmannian and 'hedra formulations.
- Feynman diagrams define cells in positive grassmannian.
- Potentially tile amplituhedra and other correlahedra.

$\mathcal{N}=4$ Super Yang-Mills

The harmonic oscillator of the 21st century?

- Toy version of standard model, contains QCD and more classically.
- Best behaved nontrivial 4d field theory (UV finite, superconformal $S U(2,2 \mid 4)$ symmetry, ...).
- Particle spectrum

helicity	-1	$-1 / 2$	0	$1 / 2$	1
\# of particles	1	4	6	$\overline{4}$	1

- Susy changes helicity so particles form irrep of 'super'-group $\operatorname{SU}(2,2 \mid 4)$ like single particle.
- 'completely integrable' in planar (large N) sector.
- much twistor geometry in their amplitudes:
(1) (Ambi-)Twistor string \& action descriptions,
(2) Grassmannian residue formulae,
(3) polyhedra volumes \leadsto the amplituhedron,

Scattering amplitudes for $\mathcal{N}=4$ super Yang-Mills

4-Momentum:

$$
p=\left(E, p_{1}, p_{2}, p_{3}\right)=E\left(1, v_{1}, v_{2}, v_{3}\right),
$$

massless $\leftrightarrow|\mathbf{v}|=c=1 \Leftrightarrow p \cdot p:=E^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}=0 . \Leftrightarrow$

$$
\Leftrightarrow \quad \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
E+p_{3} & p_{1}+i p_{2} \\
p_{1}-i p_{2} & E-p_{3}
\end{array}\right)=\binom{\lambda_{0}}{\lambda_{1}}\left(\begin{array}{cc}
\tilde{\lambda}_{0^{\prime}} & \tilde{\lambda}_{1^{\prime}}
\end{array}\right)
$$

Supermomentum: $\quad P=(\lambda, \tilde{\lambda}, \eta) \in \mathbb{C}^{4 \mid 0} \times \mathbb{C}^{0 \mid 4}$, where $\eta_{i}, i=1, \ldots, 4$ anti-commute \leadsto wave functions:

$$
\Psi(P)=a_{+}+\psi^{i} \eta_{i}+\phi^{i j} \eta_{i} \eta_{j}+\tilde{\psi}^{i j k} \eta_{i} \eta_{j} \eta_{k}+a_{-} \eta_{1} \eta_{2} \eta_{3} \eta_{4} .
$$

Amplitude: for n-particle process is

$$
\mathcal{A}(1, \ldots, n)=\mathcal{A}\left(P_{1}, \ldots, P_{n}\right)
$$

MHV degree: $k \in \mathbb{Z}, k+2=\#$ of - ve helicity particles, susy $\Rightarrow \mathcal{A}=0$ for $k=-1,-2$
For $k=0, \mathcal{A} \neq 0$, 'Maximal Helicity Violating'(MHV).

Ordinary Feynman diagrams

Contributions

Feynman diagrams are more than pictures. They represent algebraic formulas for the propagation and interaction of particles.

LO

Trees \leftrightarrow classical, loops \leftrightarrow quantum.
Locality: only simple poles from propagators at $\left(\sum p_{i}\right)^{2}=0$.

Need for new ideas

Consider the five-gluon tree-level amplitude of QCD. Enters in calculation of multi-jet production at hadron colliders.

Described by following Feynman diagrams:

If you follow the textbooks you discover a disgusting mess.

Result of a brute force calculation:

Abstract

 $$
k_{1} \cdot k_{4} \varepsilon_{2} \cdot k_{1} \varepsilon_{1} \cdot \varepsilon_{3} \varepsilon_{4} \cdot \varepsilon_{5}
$$

The Parke-Taylor MHV amplitude

However, result for helicity $(++---)$ part of the amplitude is
$\mathcal{A}(1,2,3,4,5)=\delta\left(\sum_{a=1}^{5} p_{a}\right) \frac{\left\langle\lambda_{b} \lambda_{c}\right\rangle^{4}}{\left\langle\lambda_{1} \lambda_{2}\right\rangle\left\langle\lambda_{2} \lambda_{3}\right\rangle\left\langle\lambda_{3} \lambda_{4}\right\rangle\left\langle\lambda_{4} \lambda_{5}\right\rangle\left\langle\lambda_{5} \lambda_{1}\right\rangle}$
where b and c are the + helicity particles and

$$
\langle i j\rangle:=\left\langle\lambda_{i} \lambda_{j}\right\rangle:=\lambda_{i 0} \lambda_{j 1}-\lambda_{i 1} \lambda_{j 0}
$$

(similarly use $[i, j]$ for $\tilde{\lambda}_{i} \mathrm{~s}$).
More generally (Parke-Taylor 1984, Nair 1986)

$$
\mathcal{A}_{M H V}^{\text {tree }}(1, \ldots, n)=\frac{\delta^{4 \mid 8}\left(\sum_{a=1}^{n}\left(p_{a}, \eta_{a} \lambda_{a}\right)\right)}{\prod_{a=1}^{n}\left\langle\lambda_{a} \lambda_{a+1}\right\rangle}
$$

Twistor space

Super twistor space is $\mathbb{C P}^{3 \mid 4}$ with homogeneous coords:

$$
Z=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}, \chi_{a}\right) \in \mathbb{T}:=\mathbb{C}^{2} \times \mathbb{C}^{2} \times \mathbb{C}^{0 \mid 4}, \quad Z \sim \zeta Z, \zeta \in \mathbb{C}^{*}
$$

$\mathbb{T}=$ fund. repn of superconformal group $\operatorname{SU}(2,2 \mid 4)$.
Super Minkowski space, $\mathbb{M}=G(2,4 \mid 4) \supset \mathbb{R}^{4 \mid 8}$,
Incidence: a point $\mathbf{x}=(x, \theta) \leftrightarrow$ a line $X=\mathbb{C P}^{1} \subset \mathbb{P T}$ via

$$
\mu^{\dot{\alpha}}=i x^{\alpha \dot{\alpha}} \lambda_{\alpha}, \quad \chi_{i}=\theta_{i}^{\alpha} \lambda_{\alpha}
$$

Two points x, x^{\prime} are null separated iff X and X^{\prime} intersect.

$$
\text { Space-time } \quad \text { Twistor Space }
$$

Supersymmetric Ward correspondence

Super Calabi-Yau: $\mathbb{C P}^{314}$ has weightless super volume form

$$
D^{3 \mid 4} Z=D^{3} Z \mathrm{~d} \chi_{1} \ldots \mathrm{~d} \chi_{4} \in \Omega_{B e r} .
$$

'Super-Ward' for $\mathcal{N}=4$ SYM:
A dbar-op $\bar{\partial}_{A}=\bar{\partial}_{0}+A$ on bundle over $\mathbb{C P}^{3 / 4}$ has expansion

$$
A=a+\chi_{a} \psi^{a}+\chi_{a} \chi_{b} \phi^{a b}+\chi^{3 a} \tilde{\psi}_{a}+\chi^{4} b
$$

and $\bar{\partial}_{A}^{2}=0 \leftrightarrow$ solns to self-dual $\mathcal{N}=4$ SYM on space-time.
Action for fields with self-dual interactions:[sokacther, witten] SD interactions \leftrightarrow holomorphic Chern-Simons action

$$
S_{s d}=\int_{\mathbb{P} T} \operatorname{tr}\left(A \wedge \bar{\partial} A+\frac{2}{3} A^{3}\right)_{\wedge} D^{3 \mid 4} Z .
$$

Incorporating interactions of full $\mathcal{N}=4 \mathrm{SYM}$

Nair, M., Boels, Skinner, 2006

Extension to full SYM:

$$
S_{\text {full }}[A]=S_{s d}[A]+S_{i n t}[A]
$$

includes non-local interaction term:

$$
\begin{aligned}
S_{i n t}[A] & =g^{2} \int_{\mathbb{M}} \mathrm{d}^{4 \mid 8} \mathbf{x} \log \operatorname{det}\left(\bar{\partial}_{A} \mid x\right) \\
& =g^{2} \sum_{n=2}^{\infty} \frac{1}{n} \int_{\mathbb{M} \times X^{n}} \mathrm{~d}^{4 \mid 8} \mathbf{x} \frac{\operatorname{tr}\left(A_{1} A_{2} \ldots A_{n}\right) D \sigma_{1} \ldots D \sigma_{n}}{\left\langle\sigma_{1} \sigma_{2}\right\rangle\left\langle\sigma_{2} \sigma_{3}\right\rangle \ldots\left\langle\sigma_{n} \sigma_{1}\right\rangle}
\end{aligned}
$$

$X=\mathbb{C P}_{\mathbf{x}}^{1} \subset \mathbb{P} \mathbb{T}$ for $\mathbf{x} \in \mathbb{M}^{4 \mid 8}, \sigma_{i} \in X_{i}, i^{\text {th }}$ factor,

$$
A_{i}=A\left(Z\left(\sigma_{i}\right)\right), \quad \text { and } \quad K_{i j}=\frac{D \sigma_{j}}{\left\langle\sigma_{i} \sigma_{j}\right\rangle}
$$

is Cauchy kernel of $\bar{\partial}^{-1}$ on X at σ_{i}, σ_{j}.

Axial gauge Feynman rules

Choose 'reference twistor' Z_{*}, impose gauge: $\left.\bar{Z}_{*} \cdot \frac{\partial}{\partial \bar{Z}}\right\lrcorner A=0$.
Payoff: Cubic Chern-Simons vertex $=0 \sim$ Feynman rules:

- Propagator = delta-function forcing Z, Z^{\prime}, Z_{*} to be collinear.

$$
\Delta\left(Z, Z^{\prime}\right)=\frac{1}{2 \pi i} \bar{\delta}^{2 \mid 4}\left(Z, Z_{*}, Z^{\prime}\right):=\frac{1}{2 \pi i} \int \frac{\mathrm{~d} c \mathrm{~d} C^{\prime}}{c C^{\prime}} \bar{\delta}^{4 \mid 4}\left(Z_{*}+c Z+c^{\prime} Z^{\prime}\right)
$$

- log-det term gives 'MHV vertices':

$$
V\left(Z_{1}, \ldots, Z_{n}\right)=\int_{\mathbb{M} \times X^{n}} \frac{\mathrm{~d}^{4 \mid 4} Z_{A} \mathrm{~d}^{4 \mid 4} Z_{B}}{\operatorname{Vol} G L(2)} \prod_{r=1}^{n} \frac{\bar{\delta}^{3 \mid 4}\left(Z_{r}, Z_{A}+\sigma_{r} Z_{B}\right)}{\left(\sigma_{r-1}-\sigma_{r}\right)} d \sigma_{r} .
$$

Vertices force $Z_{1}, \ldots Z_{n}$ to lie on line $X=\left\{Z(\sigma)=Z_{A}+\sigma Z_{B}\right\}$

Simplicity: \# propagators $=$ MHV degree $+2 \times \#$ loops,

Amplitudes \& Wilson loops

Amplitudes: Transform rules to momentum space \sim 'MHV rules' [csw 2005] where vertices $=$ off-shell MHV amplitudes.

But MHV diagrams also give Wilson loops etc.:
Null polygons: Supermomentum conservation for colour ordered momenta \sim null polygon $\left\{\mathbf{x}_{i}\right\}=\left\{\left(x_{i}, \theta_{i}\right)\right\} \subset \mathbb{M}$:

$$
\left(p_{i}^{A A^{\prime}}, \eta_{i}^{a} \lambda^{A}\right)=\left(x_{i}^{A A^{\prime}}-x_{i+1}^{A A^{\prime}}, \theta_{i}^{A}-\theta_{i+1}^{A}\right) .
$$

Conjecture (Alday, Maldacena)
Let $W\left(x_{1}, \ldots, x_{n}\right)=$ Wilson-loop around momentum polygon.
All loop MHV amplitude $=$ MHV tree $\times\left\langle W\left(x_{1}, \ldots, x_{n}\right)\right\rangle$.

Momentum polygons in twistor space

Generic polygon in $\mathbb{P} \mathbb{T}_{\text {[Hodges] }} \leftrightarrow$ null polygon in space-time.

Change variables so that $\left(X_{1}, \ldots, X_{n}\right)=\left(Z_{1}, \ldots, Z_{n}\right)$.
Important simplification: $Z_{i} \in \mathbb{P T}$ are unconstrained.
What is Wilson loop in $\mathbb{P T}$?

Holomorphic Wilson loops

For Wilson-loop, need holonomy around polygon in $\mathbb{P T}$.

- Vertices Z_{i},
- Edges $X_{i}=\left\{Z(\sigma)=\sigma Z_{i-1}+Z_{i}, \sigma \in \mathbb{C} \cup \infty\right\}$.
- Global frame $F_{i}(\sigma)$ of $\left.E\right|_{X_{i}}$ on X_{i} with

$$
\bar{\partial}_{\mathcal{A}}\left|x_{i} F_{i}(\sigma)=0, \quad F_{i}(\infty)=F_{i}\right| z_{i-1}=1
$$

- Perturbatively iterate $F_{i}=1+\bar{\partial}^{-1}\left(\mathcal{A} F_{i}\right)$ to get

$$
F_{i}=1+\sum_{r=1}^{\infty} \prod_{s=1}^{r} \bar{\partial}_{s-1}^{-1} \mathcal{A}\left(\sigma_{s}\right), \quad\left(\bar{\partial}_{r s}^{-1} f\right)\left(\sigma_{r}\right)=\int_{L_{x_{i}}} \frac{f\left(\sigma_{s}\right) \mathrm{d} \sigma_{s}}{\sigma_{r}-\sigma_{s}}
$$

- Define

$$
W=\operatorname{tr} \prod_{i=1}^{n} F_{i} \mid z_{i}=\operatorname{tr} \prod_{i=1}^{n} F_{i}(0)
$$

Agrees with space-time Wilson loop on-shell.

The S-matrix as a holomorphic Wilson loop

Theorem (Bullimore, M., Skinner, 2010-11)
For planar $\mathcal{N}=4$ SYM:
Amplitude loop-integrands $=$ (holomorphic) Wilson loop integrand

$$
\mathcal{A}(1, \ldots, n)=\left\langle W\left(Z_{1}, \ldots, Z_{n}\right)\right\rangle \mathcal{A}_{M H V}^{\text {tree }} .
$$

- Tree amplitudes \leftrightarrow Wilson-loop in self-dual sector ($g=0$).
- Loop expansion for $\mathcal{A}=g$-expansion for W.
- The Axial gauge twistor space diagrams for amplitude are planar duals of those for Wilson-loop correlator.

Proof: comparison of Feynman rules on $\mathbb{P T}$ (or BCFW).

Examples

NMHV case: for A^{2} part of $\langle W\rangle,\left\langle A(Z) A\left(Z^{\prime}\right)\right\rangle=\Delta\left(Z, Z^{\prime}\right)$: gives $\langle W\rangle=\sum_{i<j} \Delta_{i j}$ where $\Delta_{i j}=$

$$
\begin{aligned}
{[1,2,3,4,5] } & :=\int \frac{\mathrm{d} c_{1} \mathrm{~d} c_{2} \mathrm{~d} c_{3} \mathrm{~d} c_{4} \mathrm{~d} c_{5}}{c_{1} c_{2} c_{3} c_{4} c_{5}} \frac{1}{\operatorname{Vol~Gl}(1)} \bar{\delta}^{4 \mid 4}\left(\sum_{i=1}^{5} c_{i} Z_{i}\right) \\
& =\frac{\prod_{a=1}^{4}\left((1234) \chi_{5}^{a}+\text { cyclic }\right)}{(1234)(2345)(3451)(4512)(5123)}
\end{aligned}
$$

is the ' R-invariant'.

The $\mathrm{N}^{k} \mathrm{MHV}$ tree

$\mathrm{N}^{2} \mathrm{MHV}$: quartic terms in A in W give two Wick contractions

No crossed propagators for planarity.
$\mathrm{N}^{k} \mathrm{MHV}$ tree amplitudes $\leftrightarrow k$ propagators $\leadsto k \mathrm{R}$-invariants.

But now have 'Boundary diagrams' e.g.

At MHV with one MHV vertex obtain $\sum_{i, j} K_{i j}$ with $K_{i j}=$

Loop momenta \leftrightarrow location of line $X=\left\langle Z_{A} Z_{B}\right\rangle$. Recall:
$[*, i-1, i, A, B]:=\int \frac{\mathrm{d} c_{1} \mathrm{~d} c_{2} \mathrm{~d} c_{3} \mathrm{~d} c_{4}}{c_{1} c_{2} c_{3} c_{4}} \bar{\delta}^{4 \mid 4}\left(Z_{*}+c_{1} Z_{A}+c_{2} Z_{B}+c_{3} Z_{i-1}+c_{4} Z_{i}\right)$
can integrate $\frac{D^{4 \mid 4} Z_{A} \wedge D^{4 \mid 4} Z_{B}}{V o l G L_{2}}$ against delta functions

$$
K_{i j}=\frac{1}{(2 \pi i)^{2}} \int \frac{\mathrm{~d} c_{0} \mathrm{~d} c_{1} \mathrm{~d} b_{0} \mathrm{~d} b_{1}}{c_{0} c_{1} b_{0} b_{1}}
$$

External data encoded in integration contour (see later).

Loop integrands and correlators

Lagrangian insertions: $S_{\text {int }}[\mathcal{A}]=\int d^{4} x \mathcal{L}_{\text {int }}(x)$ where

$$
\mathcal{L}_{\text {int }}(x)=\int d^{8} \theta \log \operatorname{det}\left(\overline{\mathcal{A}}_{\mathcal{A}} \mid x\right) .
$$

Forming tree correlator with ℓ insertions gives loop integrand

$$
\left\langle W\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \mathcal{L}\left(x_{1}\right) \ldots \mathcal{L}\left(x_{l}\right)\right\rangle_{\text {tree }} .
$$

Super BPS operators: it is invariant to integrate over just 4θ s

$$
\mathcal{O}(x, \theta, Y):=\operatorname{tr}(\Phi(\mathbf{x}) \cdot Y)^{2}=\int\left(Y^{a b} d \theta_{a \alpha} d \theta_{b}^{\alpha}\right)^{2} \log \operatorname{det}\left(\bar{\partial}_{\mathcal{A}} \mid x\right)
$$

where $Y^{[a b} Y^{c d]}=0$ (so depends on the 4θ s with $\theta_{a \alpha} Y^{a b}=0$).
Proposition (Aday, Eden, Korchemsky, Maldacena, Sokacher, Heslop, Adamo, Bulimore, M., Skinner)

$$
\lim _{\left(x_{i}-x_{i+1}\right)^{2} \rightarrow 0}\left\langle\prod_{i=1}^{n} \frac{\left(x_{i}-x_{i+1}\right)^{2}}{Y_{i} \cdot Y_{i+1}} \mathcal{O}\left(\mathbf{x}_{i}, Y_{i}\right)\right\rangle=\left\langle W\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)\right\rangle^{2} .
$$

Gives 'triality' Amplitude \leftrightarrow Wilson loop \leftrightarrow BPS correlator

MHV diagrams for correlators

[Chicherin, Doobary, Eden, Heslop, Korchemsky, M., Sokatchev]

- Obtain diagrams in twistor space for $\left\langle\mathcal{O}\left(\mathbf{x}_{1}\right) \ldots \mathcal{O}\left(\mathbf{x}_{n}\right)\right\rangle$.

- Double line \leftrightarrow line $X_{I}=\left\langle Z_{l 1}, Z_{l 2}\right\rangle \subset \mathbb{P T} \leftrightarrow \mathbf{x}_{i}$.
- Solid lines \leftrightarrow twistor propagators.
- As $\left(x_{i}-x_{i+1}\right)^{2} \rightarrow 0$, consecutive lines join.
- Diagram $\rightarrow 0$ unless consecutive lines are connected by propagator \leadsto Wilson loop.

The momentum twistor Grassmannian

Recall from Nima's talks:
Grassmannian contour integral formula:[M. \& Skinner (2009)]
For $C_{r i} \in G(k, n)$ consider

$$
\oint_{\Gamma_{4 k}} \frac{d^{n k} C \prod_{r=1}^{k} \bar{\delta}^{4 \mid 4}\left(C_{r i} Z_{i}\right)}{\operatorname{volGL}(k)(1 \ldots k)(2 \ldots k+1) \ldots(n 1 \ldots k-1)} .
$$

Contour-integrate down to $4 k$-cycles and fix remaining parameters against delta-functions
\leadsto terms in BCFW expansion (and leading singularities).
Loop integrands: include L lines $\left(Z_{A_{1}}, Z_{B_{1}}\right), \ldots\left(Z_{A_{L}}, Z_{B_{L}}\right)$ in $\left(Z_{1}, \ldots, Z_{n}\right) \leadsto$ extend to $G(k+2 L, n+2 L)$.
$4 k+8 L$-cycles are characterized as positive cells.

Wilson loop diagrams in positive Grassmannian

- With $k+2 L$ propagators diagram gives

$$
\prod_{r=1}^{k+2 L} \int_{\mathbb{C P}^{4}} \frac{\mathrm{~d} c_{r 0} \mathrm{~d} c_{r r_{1}^{r}} \mathrm{~d} c_{r i_{2}^{i r}} \mathrm{~d} c_{r i_{3}^{r}} \mathrm{~d} c_{r i_{4}^{r}}}{\operatorname{Vol} G L(1) c_{r 0} c_{r i \frac{i}{r}} c_{r i_{2}^{r}} c_{r i_{3}^{r}} c_{r i_{4}^{r}}} \bar{\delta}^{4 \mid 4}\left(Y_{r}\right),
$$

where $\quad Y_{r}=c_{r 0} Z_{*}+\sum_{p=1}^{4} c_{r i_{p}^{r}} Z_{i_{p}^{r}}$

- Taking this into account we can write

$$
Y_{r}=\sum_{i=1}^{n} c_{r 0} Z_{*}+C_{r i} Z_{i} \quad C_{r i}=C_{r i}\left(c_{r i_{p}}\right)
$$

The $C_{r i}\left(c_{r i_{p}^{r}}\right)$ define $3 k$-cycle in $\operatorname{Gr}(k+2 L, n+2 L)$.

- $c_{r 0}$ provides k extra parameters to get to $4 k$-cycle.
- $4 k$-cycles have d-log volume forms in parameters $c_{\text {rir }}$.

Proposition (Agarwala,Marin-Amat)
The $3 k$-cycles are $3 k$-cells in the positive Grassmannian.

Positive Grassmannians questions

- Is d-log parametrization for $4 k$-cycle determined by positive $3 k$-cell?
- What is correspondence between Wilson-loop diagram and standard classification of positive cells?
- Key question: Do all $3 k$-cells arise? If not, how can we characterize those that do?

See Susama's talk for more on these questions.
Conjecture
The $3 k$-cells that arise are those that project to $3 k$-cells in the amplituhedron.

Bosonization, positivity and 'hedronizing

- Take real and bosonize fermionic parts of Y, Z by

$$
\mathbb{C}^{4 \mid 4} \rightarrow \mathbb{R}^{4+k} \quad \text { with } \quad Z^{r}=\chi \cdot \phi^{r}, \quad r=1, \ldots, k .
$$

- The r th fermionic delta-function arises by

$$
\delta^{0 \mid 4}(\chi)=\int\left(Y^{r}\right)^{4} \mathrm{~d}^{4} \phi^{r}
$$

- Take data $\left\{Z_{1}, \ldots, Z_{n}\right\}$ positive.
- Planarity \Rightarrow positivity of $c_{r i_{p}^{r}} \Rightarrow C_{r i} \in \operatorname{Gr}_{+}(k, n)$ encoding planarity of 'Boundary diagrams' such as:

Tiling Amplituhedra/Wilsonohedra/Correlahedra

 w/ Agarwala, Eden, Heslop, following Arkani-Hamed, Hodges, Trnka- Positive $c_{r i_{p}^{r}}$ gives $4 k$-dimensional tiles in $\operatorname{Gr}(k, k+4)$

$$
Y_{r}=c_{r 0} Z_{*}+C_{r i} Z_{i} .
$$

where $C=C\left(c_{r r_{p}^{r}}\right)$ and $c_{r 0}=0 \leadsto$ positive $3 k$-cell.

- Can we tile amplituhedra? Correlahedra?

$$
\begin{aligned}
& 0<\left\langle Y_{1} \ldots Y_{k+2 L} Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right\rangle \\
& 0<\left\langle Y_{1} \ldots Y_{k+2 L} Z_{11} Z_{l 2} Z_{j-1} Z_{j}\right\rangle \\
& 0<\left\langle Y_{1} \ldots Y_{k+2 L} Z_{l 1} Z_{l 2} Z_{m 1} Z_{m 2}\right\rangle
\end{aligned}
$$

- Above gives $\langle W\rangle^{2}$ (cf correlator \leftrightarrow Wilson-loop).
- Unlike BCFW, tiles lie both inside and out for $k \geq 2$.
- Spurious boundaries cancel (subtle for bdy diagrams).
- Gives 'hedra formulation for correlators.
[Work in progress.]

Summary \& conclusions

- Geometry of amplituhedra and Grassmannians is built into Feynman rules of twistor action in axial gauge.
- Framework extends to more general correlahedra.
- MHV diagram tiling is imperfect with tiles crossing in and out of correlahedra.
- Need to turn it into a better oiled machine for the actual integrals (unitarity, motives, symbols, cluster algebras, Fuchsian differential equations, integrability, regularization....).

The end

Thank You!

