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INTRODUCTION

The baby Skyrme model is a 2-dimensional analogue of the Skyrme model, which is a (3+1)-dimensional model for pions, first introduced by T.H.
Skyrme (1982), which is a low energy effective model for the high quark color limit of quantum chromodynamics (QCD). Furthermore, the model
can be considered as a stabilised version of the O(3) sigma model, whereby the introduction of a Skyrme term and potential term to balance to
stop the soliton from expanding infinitely to fill the entire space, or shrinking to a localised point.

This poster studies the baby Skyrme model under the potential with 2 vacua: V (φ) = (1− φ23), which was first introduced in Weidig(1999). We
explore a new family of solutions of the baby skyrme model which admits a dihedral symmetry, which has not previously been studied in this
model.

MODEL

We seek only static solutions of the equations of motion, which are obtained from varying the equations of motion with respect to some field φ.
We obtain the equations of motion by calculating the variation of some energy functional, since we seek to minimize this energy functional for
the field φ.

φ is a map between such that: φ : S2 7→ R2. We represent φ by a 3 component unit vector, which is normalised such that: φ · φ = φ21 + φ22 + φ23 = 1,
such that the target space is constrained from R2 to S2. Furthermore, a one point compactification of the domain space defines a point (the
vacuum) at ±∞. By including a point at infinity, the domain becomes R2 ∪ {∞}, which is equivalent to the unit 2−sphere, hence φ is a map
between two 2−spheres: φ : S2 7→ S2.

The static energy functional that we study is given:
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where φ is as described above, and (x, y) are the spatial coordiantes for the domain. We choose µ2 = 0.1 to be consistent with the literature.
This choice of potential depends only on φ3, hence we break the O(3) symmetry of the model to an O(2) symmetry. However, the family of
solutions we explore also admit a DN dihedral symmetry, as seen in the results section.
An example of previously studied solutions is in Weidig(1999), which admit an axial symmetry for all charges. These solutions are given by
axially symmetric ansatz:

φ = (φ1, φ2, φ3) = (sin(f) cos(Bθ), sin(f) sin(Bθ), cos(f)), (2)

Figure 1: Energy density contour plots for the standard axially symmetric solutions for charges B = 4, B = 5, B = 6 and B = 16 respectively, plotted against the domain.

The motivation behind the following initial condition is to study solutions with nested rings, which is later extended to solutions with multiple
layers. We do this in order to find a more interesting solution rather than an axial ring for all charges.
We consider an initial condition that allows for these layers of rings to exist, whereby φ1, φ2 and φ3 are set to the following functions:

φ =

 (sin f cos (−N1θ), sin f sin (−N1θ), cos f), r < r0,
(sin f cos (N2θ), sin f sin (N2θ), cos f), r0 ≤ r ≤ r1,
(sin f cos θ, sin f sin θ, cos f), r ≥ r1.

where the shape function winds around the target space for the number of layers. Namely, we create a inner ring of topological charge N1, then
an outer ring of topological charge N2 which winds in the opposite direction.

Furthermore, (r, θ) are polar coordinates, r0, r1 are constants chosen such that there is enough space for the ring to exist in the space, and f(r)
is a profile function such that:

f(r) =


2π − πr

r0
, r < r0,

π − π(r−r0)
r1−r0 , r0 ≤ r ≤ r1,

0, r ≥ r1.

where the variables and constants are the same as that for the definition of φ.

It is worth noting that the topological charge separates the solution spaces into 2 disconnected manifolds, however the solutions are obtained
via a gradient flow algorithm with a 4th order finite difference scheme, on a grid of size 601× 601, with lattice spacing 0.1., hence the manifolds
are connected.

RESULTS
At higher charges, as the previously understood solutions, which are the axial rings grow larger, the cost of the curvature of the rings decreases,
resulting in an exponential tail in the energy per baryon values, which can be seen in figure 5.
Below are some double ring solution. We differentiate between the solutions of the same overall topological charge denoting the inner and outer
charge, such that a charge N solution will be stated as a (N1, N2) solution, where N1 is the topological charge of the inner ring, and N2 is the
topological charge of the outer ring.

Figure 2: Energy density and phase coloured plots respectively for solutions with topological charge 5, (1, 4), and (2, 3) respectively. The phase is ψ = tan−1(φ2
φ1

).

Figure 3: The left hand side shows energy density for (6,10) and (7,9) configurations respectively. The right hand side shows the topological charge density coloured by the phase,
ψ = tan−1(φ2

φ1
).

In this example, the (1, 4) solution has a lower energy than the (2, 3) solution. A comparison of the solutions at different topological charges can
be seen in figure 5.

For the double ring solutions, the size of the solution is smaller, hence the cost of the curvature for an axial solution of the same size is higher,
however, we have an attraction between the layers pulling them together. This results in a dihedral symmetry, since the attraction depends on
whether the inner and outer rings are in or out of phase with each other. Moreover, the two rings move in and out of phase with each other at
various points, creating lumps of energy.

At low topological charges, these solutions are a local minima, however, at higher topology charges, these solutions could provide a global
minima solutions. We find that a local minima of these new configurations comes from a balance between the layers of the solution, such the
charge of the inner ring is less than or equal to half that of the outer ring.

The cost of the curvature for these double ring solutions is clearly higher than that of the previously understood solutions, however, at higher
charges with rings separated appropriately, this difference cost could be negligible, and the attraction between the rings could lower the energy
such that the solutions may be a global minima.

COMPARISON

Figure 4: Energy per baryon of axial configuration vs. different double ring configu-
rations.

RINGS WITH A HIGHER COUNT OF NESTED LAYERS

The following solution is has 4 nested layers. The total topologi-
cal charge is B = 24, however the layers have topological charge:
(2, 4, 8, 10). The solution exhibits a D6 symmetry, which appears to
be a result of the total charge between neighbouring rings. In this
example, the inner two rings have total topological charge B = 6, and
the outer two rings have total topological charge B = 18.
As seen with the double rings, these solutions should have D6 and
D18 symmetry respectively, however, as they are nested, we appear to
get a D6 symmetry, which is the greatest subgroup between the two
nested double rings.

Figure 5: Energy density plot of a (2,4,8,10)-quad ring, with energy per baryon
E = 1.3901.

SYMMETRIES

We plot the phase with respect to the orientation of a charge (2, 3)
ring. This suggests that there are 5 localised points where the energy
is minimal which suggests the dihedral D5 symmetry.

Figure 6: The phase of the inner ring in blue, and outer ring in red.

Figure 7: (φ1, φ2, φ3) original, then rotated in domain and then back in target space
for a (2, 3) configuration.

We verify the symmetry of the solutions by looking at the fields. Here
we show that a rotation on the target space and a rotation in the
domain in the opposite direction leaves the solution invariant.

For double rings we confirm this rotation to be a SO(3) rotation matrix
of 2π/N , where N is the total topological charge of the solution, fixed
around the φ3 axis, performed N1 times.
Note, we can also confirm the reflection symmetry (not shown here).

CONCLUSION

We have shown a new family of solutions for this model which are
local minima, and admit different symmetries to those previously
presented.

This work could be extended using by considering an ansatz using
rational maps which exhibit the same symmetries that have been
observed in this poster. This will allow us to seek certain solutions at
higher charges, without having a high number of layers.

At higher charges the solutions collapse to have more layers. It is
hopeful that at higher charges a global minima could present itself
with a higher number of rings, once configured appropriately.


