LTCC Geometry and Physics: Exercise Sheet 4

Homotopy theory

1. Let α be the loop

$$
\alpha:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}: t \mapsto\binom{\cos (2 \pi t)}{\sin (2 \pi t)}
$$

By constructing a suitable homotopy show that $\left[\alpha * \alpha^{-1}\right]=[c]$ where

$$
c:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}: t \mapsto\binom{1}{0}
$$

2. Let α, β and γ be three loops. Show that

$$
[(\alpha * \beta) * \gamma]=[\alpha *(\beta * \gamma)]
$$

3. Consider the equivalence relation in the \mathbb{R}^{2}-plane

$$
\mathbf{x} \sim \mathbf{y} \quad \text { if } \quad \mathbf{x}=\mathbf{y}+\binom{k}{l}, \quad \text { where } \quad k, l \in \mathbb{Z}
$$

The equivalence classes form the torus T^{2}. Let

$$
\alpha:[0,1] \rightarrow T^{2}: t \mapsto\binom{0}{t} \quad \text { and } \quad \beta:[0,1] \rightarrow T^{2}: t \mapsto\binom{t}{0}
$$

(a) Think of the torus as a donut and sketch the loops α and β.
(b) Show that for the torus $\left[\alpha * \beta * \alpha^{-1} * \beta^{-1}\right]=[c]$ for a suitable constant path c. What does this mean? (Hint: $[\alpha * \beta]=$?)
4. Explain why $\pi_{n}(M)$ is Abelian for $n>1$. (Hint: "Thicken" the boundary of the cubes)

Vortices

1. Show that

$$
V=\frac{1}{2} \int\left(B^{2}+\overline{D_{i} \phi} D_{i} \phi+\frac{\lambda}{4}(1-\bar{\phi} \phi)^{2}\right) \mathrm{d}^{2} x
$$

is gauge invariant under

$$
\begin{aligned}
\phi & \mapsto e^{i \alpha} \phi \\
a_{i} & \mapsto a_{i}+\partial_{i} \alpha
\end{aligned}
$$

where $D_{i}=\partial_{i} \phi-i a_{i} \phi$, and $B=\partial_{1} a_{2}-\partial_{2} a_{1}$.
2. The vector potential is a one form

$$
a=a_{1} d x+a_{2} d y=a_{\rho} d \rho+a_{\theta} d \theta
$$

Show how a_{ρ} and a_{θ} are related to a_{1} and a_{2}. For the field strength $f=d a$ calculate f_{12} and $f_{\rho \theta}$ where

$$
f=f_{12} d x \wedge d y=f_{\rho \theta} d \rho \wedge d \theta
$$

3. Show that the gauge transformation

$$
\phi \rightarrow e^{i \theta} \phi
$$

is not continuous.
4. Derive the equations of motions for $L=T-V$
(a) for the relativistic Lagrangian

$$
T=\frac{1}{2} \int\left(e_{1}^{2}+e_{2}^{2}+\overline{D_{0} \phi} D_{0} \phi\right) \mathrm{d}^{2} x
$$

where $e_{i}=\partial_{0} a_{i}-\partial_{i} a_{0}$ are the components of the electric field.
(b) For the Schrödinger-Chern-Simons Lagrangian

$$
T=\int\left(\frac{i}{2}\left(\bar{\phi} D_{0} \phi-\phi \overline{D_{0} \phi}\right)+B a_{0}+e_{1} a_{2}-e_{2} a_{1}-a_{0}\right) \mathrm{d}^{2} x .
$$

5. Show that inserting $h=2 g+2 \log \left(\frac{1}{2}\left(1-|z|^{2}\right)\right)$, into

$$
\nabla^{2} h+\Omega-\Omega e^{h}=4 \pi \sum_{r=1}^{N} \delta^{2}\left(z-Z_{r}\right)
$$

where

$$
\Omega=\frac{8}{\left(1-|z|^{2}\right)^{2}}
$$

gives rise to Liouville's equation

$$
\nabla^{2} g-e^{2 g}=2 \pi \sum_{r=1}^{N} \delta^{2}\left(z-Z_{r}\right)
$$

The solution of Liouville's equation is

$$
g=-\log \left(\frac{1}{2}\left(1-|f|^{2}\right)\right)+\frac{1}{2} \log \left|\frac{d f}{d z}\right|^{2}
$$

where $f(z)$ is an arbitrary complex function.
Take

$$
f(z)=\left(\frac{z-Z}{1-\bar{Z} z}\right)^{2}
$$

and calculate the metric for a single vortex using the formula from lecture 6 . Show that the Kähler potential for this metric is proportional to $\log \left(1-|z|^{2}\right)$. Dr Steffen Krusch, November 2010.

