LTCC Geometry and Physics: Exercise Sheet 3

1. Let M, J be an almost complex manifold and g be a hermitian metric. Let X be a vector of length $1: g(X, X)=1$. Show that $X, J X$ is an orthonormal pair-that is, $g(J X, J X)=1$ and $g(X, J X)=0$.
2. If M is a complex manifold, define an almost complex structure on a patch with coordinates $z^{j}=x^{j}+i y^{j}$ by $J\left(\frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial y^{j}}\right)$ and $J\left(\frac{\partial}{\partial y^{j}}=-\frac{\partial}{\partial x^{j}}\right)$. Show that this rule is unchanged by holomorphic change of coordinates so that it defines an almost complex structure on the whole of M. (Use the Cauchy-Riemann equations, as usual.)
3. Let X and Y be the stereographic coordinates via projection from the south pole. Invert this projection to show that points on $S^{2} \subset \mathbb{R}^{3}$ are given by

$$
\mathbf{n}=\frac{1}{1+X^{2}+Y^{2}}\left(\begin{array}{c}
2 X \\
2 Y \\
1-X^{2}-Y^{2}
\end{array}\right)
$$

Let

$$
\mathbf{n}_{X}=\frac{\partial \mathbf{n}}{\partial X} \quad \text { and } \quad \mathbf{n}_{Y}=\frac{\partial \mathbf{n}}{\partial Y}
$$

Show that \mathbf{n}_{X} and \mathbf{n}_{Y} are orthogonal to each other and to \mathbf{n} and hence span the tangent space $T_{p} M$ for fixed p. Show that $(\mathbf{n} \times$.) gives an almost complex structure on $T_{p} M$.

Dr Steffen Krusch, November 2010.

