LTCC Geometry and Physics: Exercise Sheet 2

(Note: Unless otherwise stated, the Einstein summation convention is assumed throughout.)

1. Given a Riemannian manifold M with metric g, consider the action $S=\int_{t_{0}}^{t_{1}} L d t$ with the purely kinetic Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} g(\dot{\mathbf{x}}, \dot{\mathbf{x}})=\frac{1}{2} g_{j k} \dot{x}^{j} \dot{x}^{k} \tag{1}
\end{equation*}
$$

where $g=\left(g_{j k}(\mathbf{x})\right)$ is the metric given in terms of local coordinates x^{j} for a point $\mathbf{x} \in M$ with tangent vector $\dot{\mathbf{x}}$; the dot denotes differentiation w.r.t. the parameter t along a curve. (i) Applying the principle of least action, $\delta S=0$, calculate the Euler-Lagrange equations for this Lagrangian, and show that they can be written in the form

$$
\begin{equation*}
\ddot{x}^{j}+\Gamma_{k l}^{j} \dot{x}^{k} \dot{x}^{l}=0 \tag{2}
\end{equation*}
$$

where $\Gamma_{k l}^{j}$ (the Christoffel symbols) should be found in terms of g and its derivatives.
(ii) Perform a Legendre transformation and hence reformulate the geodesic equations as an Hamiltonian system on $T^{*} M$.
2. Write down the Euclidean metric on \mathbb{R}^{3} in Cartesian coordinates, and the invariant volume form. Use this to calculate the invariant 2-form on the sphere S^{2}, and show that this is a symplectic form.
3.(i) For a pair of vector fields X, Y on a smooth manifold M of dimension d, define their commutator $[X, Y]$ (or Lie bracket) by the commutator of the corresponding differential operators. Show that with this definition the vector fields form a Lie algebra.
(ii) Now suppose that $d=2 n$ and (M, ω) is a symplectic manifold. For Hamiltonian vector fields X_{G}, X_{H} corresponding to smooth functions G, H, show that the following formula holds:

$$
\left[X_{G}, X_{H}\right]=-X_{\{G, H\}},
$$

where $\{$,$\} denotes the Poisson bracket. (Hint: Use Darboux's theorem.)$
(iii) Prove that the Hamiltonian vector fields form a Lie subalgebra of the vector fields.
4.(i) Check that the formula

$$
\left\{\pi_{j}, \pi_{k}\right\}=-\epsilon_{j k l} \pi_{l}
$$

defines a Poisson bracket on \mathbb{R}^{3} with coordinates $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, and show that (on linear functions) this is isomorphic to the Lie algebra $\mathfrak{s o}(3)$ of the rotation group in three dimensions.
(ii) Write down the Poisson tensor for the above bracket and calculate its rank. Show that $C=\pi_{1}^{2}+\pi_{2}^{2}+\pi_{3}^{2}$ is a Casimir for this bracket, and describe the symplectic leaves.
(iii) Consider the Hamiltonian system on \mathbb{R}^{3} defined by the Hamiltonian

$$
H=\frac{\pi_{1}^{2}}{2 I_{1}}+\frac{\pi_{2}^{2}}{2 I_{2}}+\frac{\pi_{3}^{2}}{2 I_{3}}
$$

Write down the equations of motion, and show that they are equivalent to the Euler top (free motion of a rigid body about a fixed point) in terms of the angular momentum $\boldsymbol{\pi}$ and angular velocity $\boldsymbol{\omega}$, where $\boldsymbol{\pi}=I \boldsymbol{\omega}$ with the inertia tensor $I=\operatorname{diag}\left(I_{1}, I_{2}, I_{3}\right)$. Can you describe the orbits?

Professor Andy Hone, October 2010.

