LTCC Geometry and Physics: Exercise Sheet 1

1. On S^{n} define the coordinate neighbourhoods

$$
\begin{aligned}
& U_{i+}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in S^{n}: x_{i}>0\right\} \\
& U_{i-}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in S^{n}: x_{i}<0\right\}
\end{aligned}
$$

Define the coordinate maps $\phi_{i \pm} \rightarrow \mathbb{R}^{n}$ via

$$
\phi_{i \pm}=\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

For $n=2$ calculate $\phi_{y-} \circ \phi_{x+}^{-1}$.
2. If f is a function on an open set $U \subset \mathbb{R}^{n}$, show that $d(d f)=0$.
3. Let $F: M=\mathbb{R}^{2} \rightarrow N=\mathbb{R}^{2}$ be defined by $F\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}^{3}, x_{1}\right)$ (or, if you prefer, by saying $y_{1}=x_{2}-x_{1}^{3}$, etc.). If $\omega=y_{1} d y_{1} \wedge d y_{2}$, compute $F^{*} \omega$ (which should be a 2 -form on M expressed using $d x_{1} \wedge d x_{2}$-differentiating something may help).
4. Recall the pullback formula for metrics:

$$
g_{\mu \nu}^{M}(x)=g_{\alpha \beta}^{N}(F(x)) \frac{\partial F^{\alpha}}{\partial x^{\mu}} \frac{\partial F^{\beta}}{\partial x^{\nu}}
$$

Let $F: M=\mathbb{R}^{2} \rightarrow N=\mathbb{R}^{2}$ be defined by $F(r, \phi)=(r \cos \phi, r \sin \phi)$. Compute the induced metric on M. Also calculate the induced map of the sphere $S^{2} \subset$ \mathbb{R}^{3} for both polar coordinates and stereographic coordinates.
5. Recall that

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

is a basis of $\left(T_{p} M\right)^{\mathbb{C}}$ (I omit indices z^{μ} on the variables). Show that $d z=$ $d x+i d y$ and $d \bar{z}=d x-i d y$ make a dual basis.
6. Show how the Hopf bundle can be derived by considering $z_{1}, z_{2} \in \mathbb{C}$, with $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$, as the total space, and $\left[z_{1}, z_{2}\right]$ as homogeneous coordinates of the base space $\mathbb{C} P^{1} \cong S^{2}$. Here homogeneous coordinates are defined via the equivalence relation

$$
\left[z_{1}, z_{2}\right]=\left[\lambda z_{1}, \lambda z_{2}\right] \quad \text { for } \quad \lambda \in \mathbb{C} \backslash\{0\} .
$$

Find two suitable coordinate charts for S^{2} and write down the corresponding local trivialisations. Give the projections. What are the transition functions?

Dr Steffen Krusch, October 2010.

