Differential Geometry and Soliton Dynamics

Steffen Krusch SMSAS, University of Kent

3 November, 2010

Steffen Krusch SMSAS, University of Kent Differential Geometry and Soliton Dynamics

- Homotopy theory
- Ginzburg-Landau vortices
- Vortices at critical coupling and the vortex moduli space
- Relativistic vortex dynamics
- First order vortex dynamics
- Vortices in different geometries

The Fundamental group $\pi_1(M)$

• Given a manifold M and an interval I = [0, 1] we can define *paths*

$$\alpha: I \to M: t \mapsto \alpha(t), \text{ where } \alpha(0) = p_0, \ \alpha(1) = p_1.$$

- A loop is a path with $p_0 = p_1$.
- Paths can be multiplied via

- The constant path is $c(s) = p_0$ for all $s \in I$.
- The inverse of a paths is $\alpha^{-1}(s) = \alpha(1-s)$.
- This is not a group, yet!

The Fundamental group II

Homotopy

Let $\alpha, \beta: I \to M$ be loops at p_0 .

 α and β are *homotopic*, $\alpha \sim \beta$, it there exists a continuous map $F: I \times I \to M$ such that

• $F(s,0) = \alpha(s)$ and $F(s,1) = \beta(s)$ for all $s \in I$.

•
$$F(0,t) = F(1,t) = p_0$$
 for all $t \in I$.

- $\alpha \sim \beta$ is an equivalence relation.
- Let $[\alpha]$ be the equivalence class given by α .
- Define a product on equivalence classes by [α] * [β] = [α * β].
- This gives the fundamental group $\pi_1(M, p_0)$.¹
- Examples: $\pi_1(S^1) = \mathbb{Z}, \quad \pi_1(\mathbb{R}^2 \setminus \{0\}) = \mathbb{Z}, \quad \pi_1(T^2) = \mathbb{Z} \oplus \mathbb{Z}.$
- Note $\pi_1(M \times N) = \pi_1(M) \oplus \pi_1(N)$.

¹If *M* is arcwise connected then $\pi_1(M, p_0)$ is isomorphic to $\pi_1(M, p_1)$.

 This generalizes naturally to higher homotopy groups: Consider maps from the cube Iⁿ = I ×···× I to a manifold M such that all the points on the boundary ∂Iⁿ of the cube are mapped to p₀ ∈ M:

$$\alpha: (I^n, \partial I^n) \to (M, p_0).$$

- Again we can form the product $\alpha * \beta$ and define the equivalence classes [α] (also known as homotopy classes).
- This gives us the *n*th homotopy group $\pi_n(M)$.
- Homotopy groups are Abelian for n > 1, i.e $[\alpha] * [\beta] = [\beta] * [\alpha]$.

Summary of important results

- Manifolds M with $\pi_1(M) = 1$ are called *simply-connected*.
- π_n(Sⁿ) = Z
 (the integer is known as the *degree* of the map and is related to the number of pre-images)
- π_n(S^d) = 1 for 1 ≤ n < d (contractible, not onto)
- $\pi_{n+1}(S^n) = \mathbb{Z}_2$, for $n \geq 3$, but $\pi_3(S^2) = \mathbb{Z}$ (related to Hopf bundle)
- π_{n+2}(S²) = Z₂ for n ≥ 2. (Homotopy groups of spheres really are complicated!)
- Spectral sequences are an important tool: Let G be a Lie group with subgroup H then

 $\cdots \to \pi_n(H) \to \pi_n(G) \to \pi_n(G/H) \to \pi_{n-1}(H) \to \pi_{n-1}(G) \to \pi_{n-1}(G/H) \to \ldots$

is a long exact sequence. (example: $G = S^3$, $H = S^1$, $G/H = S^2$)

Homotopy groups and Field Theory

- Why are these homotopy groups important for field theories?
- Field configurations are maps $\phi : \mathbb{R}^d \to M$, from flat space to a target space.
- Homotopies of maps occur naturally (e.g. time evolution is continuous and connects different field configurations in the same homotopy class).
- Two scenarios naturally give rise to homotopy groups. Both arise from boundary conditions (due to finite energy).
 - One-point compactification: There is a unique vacuum v₀ ∈ M, namely, φ(**x**) = v₀ for **x** → ∞. So, we can identify all these points, so that topologically ℝ^d ∪ {∞} = S^d. So, we need

$$\pi_d(M).$$

② Nontrivial maps at infinity: The vacuum is degenerate and forms a submanifold N of M. Then, in the limit |x| → ∞ there is a continuous map φ|_∞ : S^{d-1}_∞ → N. So, we need

$$\pi_{d-1}(N).$$

$\pi_n(S^k)$	ungauged	gauged	
$egin{array}{l} \pi_1(S^1) \ \pi_2(S^2) \ \pi_3(S^3) \ \pi_3(S^2) \end{array}$	Kinks Baby-Skyrmions, Lumps Skyrmions Hopf Solitons	Vortices Monopoles Instantons	

Ginzburg-Landau vortices

• The Ginzburg-Landau energy is given by

$$V = \frac{1}{2} \int \left(B^2 + \overline{D_i \phi} D_i \phi + \frac{\lambda}{4} \left(1 - \overline{\phi} \phi \right)^2 \right) d^2 x.$$

where $\mathbf{x} = (x, y)$.

• This is invariant under

$$\begin{aligned} \phi(\mathbf{x}) &\mapsto e^{i\alpha(\mathbf{x})}\phi(\mathbf{x}) \\ a_i(\mathbf{x}) &\mapsto a_i(\mathbf{x}) + \partial_i\alpha(\mathbf{x}). \end{aligned}$$

where $e^{i\alpha(\mathbf{x})}$ is a spatially varying phase.

• Here $D_i = \partial_i \phi - i a_i \phi$ is the covariant derivative and

$$B = \partial_1 a_2 - \partial_2 a_1$$

is the magnetic field.

• The vacuum is $\phi = 1$, $a_i = 0$ and gauge transformations of this.

• Asymptotically, for finite energy fields, we can fix the gauge so that

 $\lim_{\rho\to\infty}\phi(\rho,\theta)$

exists and varies continuously with θ , where $(x, y) = (\rho \cos \theta, \rho \sin \theta)$. • Since $|\phi| \to 1$ as $\rho \to \infty$,

$$\lim_{\rho\to\infty}(\rho,\theta)=e^{i\alpha(\theta)},$$

where α is a continuous function of $\theta.$

- Winding number N: As θ increases from 0 to 2π, α(θ) increases by 2πN (φ is single valued). N is an arbitrary integer, cannot change under smooth deformations of the field, remains constant in time.
- *N* is also invariant under smooth gauge transformations.

Topological charge II

• In polar coordinates (ρ, θ)

$$V = \frac{1}{2} \int_{0}^{\infty} \int_{0}^{2\pi} \left(B^2 + \overline{D_{\rho}\phi} D_{\rho}\phi + \frac{1}{\rho^2} \overline{D_{\theta}\phi} D_{\theta}\phi + \frac{\lambda}{4} \left(1 - \overline{\phi}\phi \right)^2 \right) \rho \, \mathrm{d}\rho \, \mathrm{d}\theta.$$

• By Stokes theorem

$$\int_{\mathbb{R}^2} B \, \mathrm{d}^2 x = \int_0^{2\pi} a_\theta \, \mathrm{d}\theta \Bigg|_{\rho \to \infty}$$

• As $\rho \to \infty$, the covariant derivative $D_{\theta}\phi = \partial_{\theta} - ia_{\theta}\phi$ has to vanish. Since $\phi = e^{i\alpha(\theta)}$ we have $a_{\theta} = \frac{d\alpha}{d\theta}$. Hence

$$\int_{\mathbb{R}^2} B \, \mathrm{d}^2 x = \alpha(2\pi) - \alpha(0) = 2\pi N.$$

so N measures the magnetic flux units in the plane.

Topological charge III

- If φ has only isolated zeros, then the number of these (counted with multiplicity) is N.
- A zero of φ is said to have multiplicity k, if on a small cirlce enclosing the zero,
 - arg φ increases by 2πk. For simple zeros k = ±1.

Energy of N Ginzburg-Landau vortices

• Let E_N be the minimal energy V of N vortices.

 $\begin{array}{ll} \lambda < 1 & E_N < NE_1 & \text{the vortices attract (Type I)} \\ \lambda > 1 & E_N > NE_1 & \text{the vortices repel (Type II)} \\ \lambda = 1 & E_N = NE_1 & \text{no forces between static vortices} \end{array}$

Vortices at critical coupling $\lambda = 1$

• By "completing the square" V can be written as

$$V = \frac{1}{2} \int \left(\left(B - \frac{1}{2} \left(1 - \overline{\phi}\phi \right) \right)^2 + \left(\overline{D_1 \phi + i D_2 \phi} \right) \left(D_1 \phi + i D_2 \phi \right) + B \right) \mathrm{d}^2 x.$$

Recall that

$$\int B \, \mathrm{d}^2 x = 2\pi N, \quad \mathrm{so} \quad V \geq \pi N.$$

Bogomolny equations:

$$D_1\phi + iD_2\phi = 0$$
$$B - \frac{1}{2}(1 - \overline{\phi}\phi) = 0.$$

• These equations cannot be solved analytically. However, a lot is known about the solutions.

- For given topological charge *N*, the Bogomolny equations have a 2*N* dimensional manifold of static solutions, known as the *moduli space M*_{*N*}. (Gauge equivalent solutions are identified.)
- All zeros of ϕ have positive multiplicity (generically there are only simple zeros).
- A solution is completely determined by the locations of these zeros, which can be anywhere. N unordered points in \mathbb{R}^2 require 2N coordinates.
- There are no static forces between vortices for λ = 1, however, there will be velocity dependent forces.

• The standard relativistic Lagrangian is

$$\mathcal{L} = rac{1}{2} \overline{D_\mu \phi} D^\mu \phi - rac{1}{4} f_{\mu
u} f^{\mu
u} - rac{\lambda}{8} \left(1 - \overline{\phi} \phi
ight)^2,$$

where $x^{\mu} = (t, \mathbf{x})$.

- In the following, we will often use complex coordinates z = x + iy.
- We can parametrize the moduli space for λ = 1 in terms of the vortex positions Z_i. Assuming that Z_i are time dependent gives rise to the reduced Lagrangian

$$L_{\rm red.} = \frac{1}{2} \sum_{r,s=1}^{N} \left(g_{rs} \dot{Z}_r \dot{Z}_s + g_{r\overline{s}} \dot{Z}_r \dot{\overline{Z}}_s + g_{\overline{rs}} \dot{\overline{Z}}_r \dot{\overline{Z}}_s \right) - V_{\rm red.},$$

where

$$V_{\mathrm{red.}} = rac{\lambda-1}{8} \int \left(1-\overline{\phi}\phi
ight)^2 \mathrm{d}^2 x.$$

Properties of the moduli space

• Setting $h = \log |\phi|^2$ the Bogomolny equations imply

$$abla^2 h + 1 - e^h = 4\pi \sum_{r=1}^N \delta^2(z - Z_r).$$

- The δ functions arise because *h* has logarithmic singularities at the zeros Z_r of ϕ .
- Expanding h around the point Z_r gives

$$h(z, \bar{z}) = 2 \log |z - Z_r| + a_r + \frac{1}{2} \bar{b}_r(z - Z_r) + \frac{1}{2} b_r(\bar{z} - \bar{Z}_r) + \dots$$

After a long calculation

$$L_{\rm red.} = \frac{\pi}{2} \sum_{r,s=1}^{N} \left(\delta_{rs} + 2 \frac{\partial b_s}{\partial Z_r} \right) \dot{Z}_r \dot{\bar{Z}}_s - V_{\rm red.}$$

• The moduli space metric

$$g = \frac{\pi}{2} \sum_{r,s=1}^{N} \left(\delta_{rs} + 2 \frac{\partial b_s}{\partial Z_r} \right) dZ_r d\bar{Z}_s$$

is Kähler.

- This structure provides a lot of information about the metric, although it is only know implicitly.
- The moduli space approximation captures the dynamics of vortices, in particular right-angle scattering.

• The Schrödinger-Chern-Simons Lagrangian

$$\mathcal{L}_{SCS} = \frac{i}{2} \left(\overline{\phi} D_0 \phi - \phi \overline{D_0 \phi} \right) + B a_0 + e_1 a_2 - e_2 a_1 - a_0 - \frac{1}{2} B^2 - \frac{1}{2} \overline{D_i \phi} D_i \phi - \frac{\lambda}{8} \left(1 - \overline{\phi} \phi \right)^2,$$

is a model for vortex dynamics in superconductors.

- This Lagrangian is gauge invariant and Galilean invariant.
- \mathcal{L}_{SCS} give rise to first order vortex dynamics.
- For λ close to one, we can again use our moduli space M_N to approximate the dynamics of N vortices.

Moduli approximation and the Kähler potential

• Now, the reduced Lagrangian is also first order

$$L_{\mathrm{red.}} = -\sum_{i=1}^{2N} \mathcal{A}_i(\mathbf{y}) \dot{y}_i - V_{\mathrm{red.}}(\mathbf{y}),$$

where \boldsymbol{y} are the coordinates on the moduli space and

$$V_{\mathrm{red.}} = rac{\lambda-1}{8} \int \left(1-\overline{\phi}\phi
ight)^2 \mathrm{d}^2 x.$$

- \mathcal{A} is a gauge potential, and $\mathcal{F} = d\mathcal{A}$ the corresponding field strength.
- The equations of motion are

$$\mathcal{F}_{ij}\dot{y}_j = -rac{\partial V_{\mathrm{red.}}}{\partial y_i}$$

• The field strength ${\cal F}$ is

$$\mathcal{F} = -i\pi\sum_{r,s=1}^{N}\left(\delta_{rs} + 2rac{\partial b_s}{\partial Z_r}
ight) dZ_r \wedge dar{Z}_s$$

which is the Kähler form associated to the metric g on M_N .

Moduli space approximation

- For λ close to 1, two vortices circle around each other anticlockwise.
- Moduli space approximation is in agreement with numerical simulation.

Vortices on various domains

• We can consider physical spaces with a different metric, e.g.

$$ds^2 = dt^2 - \Omega(x, y)(dx^2 + dy^2),$$

where Ω is a Riemannian metric on a physical space X.

• Again we can "complete the square" and obtain the Bogomolny equations

$$egin{array}{rcl} D_1\phi+iD_2\phi&=&0\ B-rac{\Omega}{2}\left(1-\overline{\phi}\phi
ight)&=&0, \end{array}$$

where $B = f_{12}$.

The integral

$$c_1 = \frac{1}{2\pi} \int_X f = \frac{1}{2\pi} \int_X B \, \mathrm{d}^2 x$$

is an integer. This topological invariant is known as the first *Chern number*.

Compact domains and the Bradlow limit

• We can integrate the second Bogomolny equation over X and obtain

$$2\int_X B \mathrm{d}^2 x + \int_X |\phi|^2 \Omega \mathrm{d}^2 x = \int_X \Omega \mathrm{d}^2 x.$$

• If X has a finite area A we obtain

$$4\pi N + \int_X |\phi^2| \Omega \, \mathrm{d}^2 x = A.$$

• This gives us the Bradlow limit

$$A \ge 4\pi N$$

in other words, a vortex needs at least an area of 4π .

- At the Bradlow bound $A = 4\pi N$ both equations can trivially be solved by $\phi = 0$ and $B = \frac{\Omega}{2}$.
- For the torus T^2 the moduli space metric has been calculated as an expansion around the Bradlow limit.

Hyperbolic vortices

• Setting $h = \log |\phi|^2$ we can again derive an equation for h:

$$\nabla^2 h + \Omega - \Omega e^h = 4\pi \sum_{r=1}^N \delta^2 (z - Z_r).$$

For hyperbolic space

$$ds^2 = \frac{8}{(1-|z|^2)^2} dz \ d\overline{z}$$

with |z| < 1, the equation can be transformed to Liouville's equation, which is integrable.

• In this case, the moduli space is known explicitly, and

$$\phi=\frac{1-|z|^2}{1-|f|^2}\frac{df}{dz}.$$

f(z) has the rather simple form

$$f(z) = \prod_{i=1}^{N+1} \left(\frac{z-c_i}{1-\overline{c}_i z} \right)$$

where $|c_i| < 1$. The positions of the vortices are the zeros of $\frac{df}{dz}$.

Metric for Hyperbolic vortices

• In hyperbolic space, the metric is

$$g = \frac{\pi}{2} \sum_{r,s=1}^{N} \left(\Omega(Z_r) \delta_{rs} + 2 \frac{\partial b_s}{\partial Z_r} \right) dZ_r d\bar{Z}_s$$

but now we can calculate b_s for special cases.

• The metric for *n* vortices on a regular polygon with *m* vortices fixed at the origin is given by

$$ds^2 = rac{4\pi n^3 |lpha|^{2n-2} dlpha \ dar{lpha}}{\left(1 - |lpha|^{2n}
ight)^2} \left(1 + rac{2n\left(1 + |lpha|^{2n}
ight)}{\sqrt{(m+1)^2\left(1 - |lpha|^{2n}
ight)^2 + 4n^2 |lpha|^{2n}}}
ight)$$

for $n \neq m+1$, and by

$$ds^{2} = \frac{12\pi n^{3}|\alpha|^{2n-2}d\alpha \ d\bar{\alpha}}{\left(1-|\alpha|^{2n}\right)^{2}}$$

for m + 1 = n. The nontrivial zeros are at $z = \alpha e^{2\pi i k/n}$ for $k = 0, \ldots, n - 1$.