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The Fundamental group π1(M)

Given a manifold M and an interval I = [0, 1] we can define paths

α : I → M : t 7→ α(t), where α(0) = p0, α(1) = p1.

A loop is a path with p0 = p1.

Paths can be multiplied via

α ∗ β(s) =

 α(2s) 0 ≤ s ≤ 1
2 ,

β(2s − 1) 1
2 ≤ s ≤ 1.

The constant path is c(s) = p0 for all s ∈ I .

The inverse of a paths is α−1(s) = α(1− s).

This is not a group, yet!
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The Fundamental group II

Homotopy

Let α, β : I → M be loops at p0.
α and β are homotopic, α ∼ β, it there exists a continuous map
F : I × I → M such that

F (s, 0) = α(s) and F (s, 1) = β(s) for all s ∈ I .

F (0, t) = F (1, t) = p0 for all t ∈ I .

α ∼ β is an equivalence relation.

Let [α] be the equivalence class given by α.

Define a product on equivalence classes by [α] ∗ [β] = [α ∗ β].

This gives the fundamental group π1(M, p0).
1

Examples: π1(S
1) = Z, π1(R2 \ {0}) = Z, π1(T

2) = Z⊕ Z.

Note π1(M × N) = π1(M)⊕ π1(N).

1If M is arcwise connected then π1(M, p0) is isomorphic to π1(M, p1).
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Higher Homotopy groups πn(M)

This generalizes naturally to higher homotopy groups: Consider
maps from the cube I n = I × · · · × I to a manifold M such that all
the points on the boundary ∂I n of the cube are mapped to p0 ∈ M:

α : (I n, ∂I n) → (M, p0).

Again we can form the product α ∗ β and define the equivalence
classes [α] (also known as homotopy classes).

This gives us the nth homotopy group πn(M).

Homotopy groups are Abelian for n > 1, i.e [α] ∗ [β] = [β] ∗ [α].
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Summary of important results

Manifolds M with π1(M) = 1 are called simply-connected.

πn(S
n) = Z

(the integer is known as the degree of the map and is related to the
number of pre-images)

πn(S
d) = 1 for 1 ≤ n < d

(contractible, not onto)

πn+1(S
n) = Z2, for n ≥ 3, but π3(S

2) = Z (related to Hopf bundle)

πn+2(S
2) = Z2 for n ≥ 2.

(Homotopy groups of spheres really are complicated!)

Spectral sequences are an important tool:
Let G be a Lie group with subgroup H then

· · · → πn(H) → πn(G) → πn(G/H) → πn−1(H) → πn−1(G) → πn−1(G/H) → . . .

is a long exact sequence. (example: G = S3, H = S1, G/H = S2)
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Homotopy groups and Field Theory

Why are these homotopy groups important for field theories?

Field configurations are maps φ : Rd → M, from flat space to a
target space.

Homotopies of maps occur naturally (e.g. time evolution is
continuous and connects different field configurations in the same
homotopy class).

Two scenarios naturally give rise to homotopy groups. Both arise
from boundary conditions (due to finite energy).

1 One-point compactification: There is a unique vacuum v0 ∈ M,
namely, φ(x) = v0 for x →∞. So, we can identify all these points,
so that topologically Rd ∪ {∞} = Sd . So, we need

πd(M).

2 Nontrivial maps at infinity: The vacuum is degenerate and forms a
submanifold N of M. Then, in the limit |x| → ∞ there is a
continuous map φ|∞ : Sd−1

∞ → N. So, we need

πd−1(N).
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Classification of solitons

πn(S
k) ungauged gauged

π1(S
1) Kinks Vortices

π2(S
2) Baby-Skyrmions, Lumps Monopoles

π3(S
3) Skyrmions Instantons

π3(S
2) Hopf Solitons
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Ginzburg-Landau vortices

The Ginzburg-Landau energy is given by

V =
1

2

∫ (
B2 + DiφDiφ +

λ

4

(
1− φφ

)2
)

d2x .

where x = (x , y).

This is invariant under

φ(x) 7→ e iα(x)φ(x)

ai (x) 7→ ai (x) + ∂iα(x),

where e iα(x) is a spatially varying phase.

Here Di = ∂iφ− iaiφ is the covariant derivative and

B = ∂1a2 − ∂2a1

is the magnetic field.

The vacuum is φ = 1, ai = 0 and gauge transformations of this.
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Topological charge I

Asymptotically, for finite energy fields, we can fix the gauge so that

lim
ρ→∞

φ(ρ, θ)

exists and varies continuously with θ, where (x , y) = (ρ cos θ, ρ sin θ).

Since |φ| → 1 as ρ →∞,

lim
ρ→∞

(ρ, θ) = e iα(θ),

where α is a continuous function of θ.

Winding number N: As θ increases from 0 to 2π, α(θ) increases by
2πN (φ is single valued). N is an arbitrary integer, cannot change
under smooth deformations of the field, remains constant in time.

N is also invariant under smooth gauge transformations.
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Topological charge II

In polar coordinates (ρ, θ)

V =
1

2

∞∫
0

2π∫
0

(
B2 + DρφDρφ +

1

ρ2
DθφDθφ +

λ

4

(
1− φφ

)2
)

ρ dρ dθ.

By Stokes theorem

∫
R2

B d2x =

2π∫
0

aθ dθ

∣∣∣∣∣∣
ρ→∞

As ρ →∞, the covariant derivative Dθφ = ∂θ − iaθφ has to vanish.
Since φ = e iα(θ) we have aθ = dα

dθ . Hence∫
R2

B d2x = α(2π)− α(0) = 2πN.

so N measures the magnetic flux units in the plane.
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Topological charge III

If φ has only isolated zeros,
then the number of these
(counted with multiplicity) is N.

A zero of φ is said to have
multiplicity k, if on a small
cirlce enclosing the zero,
− arg φ increases by 2πk. For
simple zeros k = ±1.
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Energy of N Ginzburg-Landau vortices

Let EN be the minimal energy V of N vortices.

λ < 1 EN < NE1 the vortices attract (Type I)
λ > 1 EN > NE1 the vortices repel (Type II)
λ = 1 EN = NE1 no forces between static vortices
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Vortices at critical coupling λ = 1

By “completing the square” V can be written as

V =
1

2

Z  „
B − 1

2

`
1− φφ

´«2

+
`
D1φ + iD2φ

´
(D1φ + iD2φ) + B

!
d2x .

Recall that ∫
B d2x = 2πN, so V ≥ πN.

Bogomolny equations:

D1φ + iD2φ = 0

B − 1

2

(
1− φφ

)
= 0.

These equations cannot be solved analytically. However, a lot is
known about the solutions.
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The Vortex moduli space

For given topological charge N, the Bogomolny equations have a 2N
dimensional manifold of static solutions, known as the moduli space
MN . (Gauge equivalent solutions are identified.)

All zeros of φ have positive multiplicity (generically there are only
simple zeros).

A solution is completely determined by the locations of these zeros,
which can be anywhere. N unordered points in R2 require 2N
coordinates.

There are no static forces between vortices for λ = 1, however, there
will be velocity dependent forces.
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Relativistic vortex dynamics

The standard relativistic Lagrangian is

L =
1

2
DµφDµφ− 1

4
fµν f µν − λ

8

(
1− φφ

)2
,

where xµ = (t, x).

In the following, we will often use complex coordinates z = x + iy .

We can parametrize the moduli space for λ = 1 in terms of the
vortex positions Zi . Assuming that Zi are time dependent gives rise
to the reduced Lagrangian

Lred. =
1

2

N∑
r ,s=1

(
grs Żr Żs + grs Żr

˙̄Zs + grs
˙̄Zr

˙̄Zs

)
− Vred.,

where

Vred. =
λ− 1

8

∫ (
1− φφ

)2
d2x .
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Properties of the moduli space

Setting h = log |φ|2 the Bogomolny equations imply

∇2h + 1− eh = 4π

N∑
r=1

δ2(z − Zr ).

The δ functions arise because h has logarithmic singularities at the
zeros Zr of φ.

Expanding h around the point Zr gives

h(z , z̄) = 2 log |z − Zr |+ ar +
1

2
b̄r (z − Zr ) +

1

2
br (z̄ − Z̄r ) + . . .

After a long calculation

Lred. =
π

2

N∑
r ,s=1

(
δrs + 2

∂bs

∂Zr

)
Żr

˙̄Zs − Vred.
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The metric on the moduli space

The moduli space metric

g =
π

2

N∑
r ,s=1

(
δrs + 2

∂bs

∂Zr

)
dZrdZ̄s

is Kähler.

This structure provides a lot of information about the metric,
although it is only know implicitly.

The moduli space approximation captures the dynamics of vortices,
in particular right-angle scattering.
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First order vortex dymanics

The Schrödinger-Chern-Simons Lagrangian

LSCS =
i

2

(
φD0φ− φD0φ

)
+ Ba0 + e1a2 − e2a1 − a0

−1

2
B2 − 1

2
DiφDiφ−

λ

8

(
1− φφ

)2
,

is a model for vortex dynamics in superconductors.

This Lagrangian is gauge invariant and Galilean invariant.

LSCS give rise to first order vortex dynamics.

For λ close to one, we can again use our moduli space MN to
approximate the dynamics of N vortices.
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Moduli approximation and the Kähler potential

Now, the reduced Lagrangian is also first order

Lred. = −
2N∑
i=1

Ai (y)ẏi − Vred.(y),

where y are the coordinates on the moduli space and

Vred. =
λ− 1

8

∫ (
1− φφ

)2
d2x .

A is a gauge potential, and F = dA the corresponding field
strength.
The equations of motion are

Fij ẏj = −∂Vred.

∂yi
.

The field strength F is

F = −iπ
N∑

r ,s=1

(
δrs + 2

∂bs

∂Zr

)
dZr ∧ dZ̄s

which is the Kähler form associated to the metric g on MN .
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Moduli space approximation

For λ close to 1, two vortices
circle around each other
anticlockwise.

Moduli space approximation is
in agreement with numerical
simulation.
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Vortices on various domains

We can consider physical spaces with a different metric, e.g.

ds2 = dt2 − Ω(x , y)(dx2 + dy2),

where Ω is a Riemannian metric on a physical space X .

Again we can “complete the square” and obtain the Bogomolny
equations

D1φ + iD2φ = 0

B − Ω

2

(
1− φφ

)
= 0,

where B = f12.

The integral

c1 =
1

2π

∫
X

f =
1

2π

∫
X

B d2x

is an integer. This topological invariant is known as the first Chern
number.
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Compact domains and the Bradlow limit

We can integrate the second Bogomolny equation over X and obtain

2

∫
X

B d2x +

∫
X

|φ|2Ω d2x =

∫
X

Ω d2x .

If X has a finite area A we obtain

4πN +

∫
X

|φ2|Ω d2x = A.

This gives us the Bradlow limit

A ≥ 4πN

in other words, a vortex needs at least an area of 4π.

At the Bradlow bound A = 4πN both equations can trivially be
solved by φ = 0 and B = Ω

2 .

For the torus T 2 the moduli space metric has been calculated as an
expansion around the Bradlow limit.
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Hyperbolic vortices

Setting h = log |φ|2 we can again derive an equation for h :

∇2h + Ω− Ωeh = 4π

N∑
r=1

δ2(z − Zr ).

For hyperbolic space

ds2 =
8

(1− |z |2)2
dz dz

with |z | < 1, the equation can be transformed to Liouville’s
equation, which is integrable.
In this case, the moduli space is known explicitly, and

φ =
1− |z |2

1− |f |2
df

dz
.

f (z) has the rather simple form

f (z) =
N+1∏
i=1

(
z − ci

1− c iz

)
where |ci | < 1. The positions of the vortices are the zeros of df

dz .
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Metric for Hyperbolic vortices

In hyperbolic space, the metric is

g =
π

2

N∑
r ,s=1

(
Ω(Zr )δrs + 2

∂bs

∂Zr

)
dZrdZ̄s

but now we can calculate bs for special cases.

The metric for n vortices on a regular polygon with m vortices fixed
at the origin is given by

ds2 =
4πn3|α|2n−2dα dᾱ

(1− |α|2n)2

1 +
2n

(
1 + |α|2n

)√
(m + 1)2 (1− |α|2n)2 + 4n2|α|2n


for n 6= m + 1, and by

ds2 =
12πn3|α|2n−2dα dᾱ

(1− |α|2n)2

for m + 1 = n. The nontrivial zeros are at z = α e2πik/n for
k = 0, . . . , n − 1.

Steffen Krusch Differential Geometry and Soliton Dynamics


