More Applications of Differential Geometry to Mathematical Physics

Steffen Krusch
SMSAS, University of Kent

3 November, 2010

Outline

- Review: Manifolds, Fibre bundles
- Differential forms and integration
- The Hodge $*$ and products of p-forms
- Complex Geometry

Def: M is an m-dimensional (differentiable) manifold if

- M is a topological space.
- M comes with family of charts $\left\{\left(U_{i}, \phi_{i}\right)\right\}$ known as atlas.
- $\left\{U_{i}\right\}$ is family of open sets covering $M: \bigcup_{i} U_{i}=M$.
- ϕ_{i} is homeomorphism from U_{i} onto open subset U_{i}^{\prime} of \mathbb{R}^{m}.
- Given $U_{i} \cap U_{j} \neq \emptyset$, then the map

$$
\psi_{i j}=\phi_{i} \circ \phi_{j}^{-1}: \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)
$$

is $C^{\infty} . \psi_{i j}$ are called crossover maps.

Functions between manifolds

- Let M be an m dimensional manifold with charts $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{m}$ and N be an n dimensional manifold with charts $\psi_{j}: \tilde{U}_{j} \rightarrow \mathbb{R}^{n}$.
- Let f be a map between manifolds:

$$
f: M \rightarrow N, p \mapsto f(p) .
$$

- This has a coordinate presentation

$$
F_{j i}=\psi_{j} \circ f \circ \phi_{i}^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, x \mapsto \psi_{j}\left(f\left(\phi_{i}^{-1}(x)\right)\right),
$$

where $x=\phi_{i}(p)\left(p \in U_{i}\right.$ and $\left.f(p) \in \tilde{U}_{j}\right)$.

- Using the coordinate presentation all the calculus rules in \mathbb{R}^{n} work for maps between manifolds. If the presentations $F_{j i}$ are differentiable in all charts then f is differentiable.

Def: A fibre bundle (E, π, M, F, G) consists of

- A manifold E called total space, a manifold M called base space and a manifold F called fibre (or typical fibre)
- A surjection $\pi: E \rightarrow M$ called the projection. The inverse image of a point $p \in M$ is called the fibre at p, namely $\pi^{-1}(p)=F_{p} \cong F$.
- A Lie group G called structure group which acts on F on the left.
- A set of open coverings $\left\{U_{i}\right\}$ of M with diffeomorphism $\phi_{i}: U_{i} \times F \rightarrow \pi^{-1}\left(U_{i}\right)$, such that $\pi \circ \phi_{i}(p, f)=p$. The map is called the local trivialization, since ϕ_{i}^{-1} maps $\pi^{-1}\left(U_{i}\right)$ to $U_{i} \times F$.
- Transition functions $t_{i j}: U_{i} \cap U_{j} \rightarrow G$, such that $\phi_{j}(p, f)=\phi_{i}\left(p, t_{i j}(p) f\right)$. Fix p then $t_{i j}=\phi_{i}^{-1} \circ \phi_{j}$.

Recall Tangent vectors

- Tangent vectors act on functions via

$$
X[f]=X^{\mu} \frac{\partial f}{\partial x^{\mu}}
$$

- The components of X^{μ} and \tilde{X}^{μ} are related via

$$
\tilde{X}^{\mu}=X^{\nu} \frac{\partial y^{\mu}}{\partial x^{\nu}}
$$

- We defined the pairing

$$
\left\langle d x^{\nu}, \frac{\partial}{\partial x^{\mu}}\right\rangle=\frac{\partial x^{\nu}}{\partial x^{\mu}}=\delta_{\mu}^{\nu}
$$

- This leads us to one-forms $\omega=\omega_{\mu} d x^{\mu}$, also independent of choice of coordinates. Now, we have

$$
\omega=\omega_{\mu} d x^{\mu}=\tilde{\omega}_{\nu} d y^{\nu} \quad \Longrightarrow \quad \tilde{\omega}_{\nu}=\omega_{\mu} \frac{\partial x^{\mu}}{\partial y^{\nu}}
$$

- A basis of $T_{p} M$ is given by $\partial / \partial x^{\mu},(1 \leq \mu \leq n)$, hence $\operatorname{dim} M=\operatorname{dim} T_{p} M$, and similarly for $T_{p}^{*} M$ with basis $d x^{\mu}$.
- The union of all tangent spaces forms the tangent bundle

$$
T M=\bigcup_{p \in M} T_{p} M .
$$

- Similarly, the union of all cotangent spaces forms the cotangent bundle

$$
T^{*} M=\bigcup_{p \in M} T_{p}^{*} M
$$

- $T M$ and $T^{*} M$ are $2 n$ dimensional manifolds with base space M and fibre \mathbb{R}^{n}.
- Given a smooth map between manifolds

$$
f: M \rightarrow N, p \mapsto f(p)
$$

we can define a map between the tangent spaces $T M$ and $T N$ via

$$
f_{*}: T_{p} M \rightarrow T_{f(p)} N, V \mapsto f_{*} V
$$

which is called pushforward. Let $g \in C^{\infty}(N)$ then $g \circ f \in C^{\infty}(M)$. Define the action of the vector $f_{*} V$ on g via

$$
f_{*} V(g)=V(g \circ f)
$$

- Similarly, we can define a map between the cotangent spaces $T^{*} N$ and $T^{*} M$ via

$$
f^{*}: T_{f(p)}^{*} N \rightarrow T_{p}^{*} M, \omega \mapsto f^{*} \omega
$$

which is called pullback. The pullback can be defined via the pairing

$$
\left\langle f^{*} \omega, V\right\rangle_{M}=\left\langle\omega, f_{*} V\right\rangle_{N}
$$

Metric

- A metric g is a $(0,2)$ tensor which satisfies at each point $p \in M$:
(1) $g_{p}(U, V)=g_{p}(V, U)$ (symmetric)
(2) $g_{p}(U, U) \geq 0$, with equality only when $U=0$ (non-degenerate) where $U, V \in T_{p} M$.
- The metric g provides an inner product for each tangent space $T_{p} M$.
- Notation:

$$
g=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- The metric provides an isomorphism between vector fields $X \in T M$ and 1-forms $\eta \in T^{*} M$ via

$$
g(., X)=\eta_{X}
$$

- In physics notation $g_{\mu \nu}$ and its inverse $g^{\mu \nu}$ lower and raise indices.

Symplectic form

- A symplectic form ω is a 2 -form which satisfies
(1) ω is closed, i.e. $d \omega=0$.
(2) ω is non-degenarate: $\omega(U, V)=0$ for all V implies $U=0$. where $U, V \in T_{p} M$.
- Notation:

$$
\omega=\frac{1}{2} \omega_{\mu \nu} d x^{\mu} \wedge d x^{\nu}
$$

- The symplectic form also provides an isomorphism between vector fields $X \in T M$ and 1 -forms $\eta \in T^{*} M$ via

$$
\omega(., X)=\eta_{x}
$$

Differential forms

- A basis for a p-form $\in \Omega^{p}(M)$ is

$$
\left\langle d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{k}}\right\rangle \quad \text { where } \quad 1 \leq \mu_{1}<\cdots<\mu_{k} \leq n .
$$

- Wedge product:

$$
\wedge: \Omega^{k} \times \Omega^{\prime} \rightarrow \Omega^{k+1}
$$

where

$$
\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha
$$

- Exterior derivative: Given

$$
\omega=\frac{1}{k!} \omega_{\mu_{1} \ldots \mu_{k}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{k}}
$$

then

$$
d \omega=\frac{1}{k!}\left(\frac{\partial}{\partial \nu} \omega_{\mu_{1} \ldots \mu_{k}}\right) d x^{\nu} \wedge d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{k}}
$$

- Recall $d^{2}=0$.

Integration on Manifolds

- Recall under change of basis tangent vectors transform as

$$
Y_{\nu}=\left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right) X_{\mu}
$$

Two chart define the same orientation provided that

$$
\operatorname{det}\left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right)>0 .
$$

- A manifold is orientable if for any overlapping charts U_{i} and U_{j} there exist local coordinates $x^{\mu} \in U_{i}$ and $y^{\mu} \in U_{j}$ such that $\operatorname{det}\left(\frac{\partial x^{\mu}}{\partial y^{\nu}}\right)>0$.
- The invariant volume element on M is given by

$$
\Omega=\sqrt{|g|} d x^{1} \wedge \ldots d x^{m} \quad \text { where } \quad g=\operatorname{det}\left(g_{\mu \nu}\right) .
$$

Integration on Manifolds II

- Now, we can integrate a function $f: M \rightarrow \mathbb{R}$ over M. First consider one chart:

$$
\int_{U_{i}} f \Omega=\int_{\phi\left(U_{i}\right)} f\left(\phi_{i}^{-1}(x)\right) \sqrt{\mid g\left(\phi^{-1}(x) \mid\right.} d x^{1} d x^{2} \ldots d x^{m}
$$

- A partition of unity is a family of differentiable functions $\epsilon_{i}(p)$, $1 \leq i \leq k$ such that
(1) $0 \leq \epsilon_{i}(p) \leq 1$.
(2) $\epsilon_{i}(p)=0$ if $p \notin U_{i}$
(3) $\epsilon_{1}(p)+\cdots+\epsilon_{k}(p)=1$ for any point $p \in M$.
- Integrate over the whole manifold M via

$$
\int_{M} f \Omega=\sum_{i=1}^{k} \int_{U_{i}} f(p) \epsilon_{i}(p) \Omega
$$

- Let w be a p-form and R a $p+1$ dimensional region in M with boundary ∂R, then

$$
\int_{R} d \omega=\int_{\partial R} \omega .
$$

- Special case: $\omega=p d x+q d y$ in \mathbb{R}^{2}, then

$$
d \omega=\left(\partial_{y} q-\partial_{y} p\right) d x \wedge d y .
$$

- Hence,

$$
\oint_{\mathcal{C}}(p d x+q d y)=\iint_{R}\left(\partial_{y} q-\partial_{y} p\right) d x d y
$$

which is Green's theorem in the plane.

Examples: Stokes and Divergence Theorem

- In \mathbb{R}^{3} we have $\omega=f_{1} d x+f_{2} d y+f_{3} d z$, and
$d \omega=\left(\partial_{y} f_{3}-\partial_{z} f_{2}\right) d y \wedge d z+\left(\partial_{z} f_{1}-\partial_{x} f_{3}\right) d z \wedge d x+\left(\partial_{x} f_{2}-\partial_{y} f_{1}\right) d x \wedge d y$, which gives rise to the usual Stokes theorem

$$
\oint_{C} \mathbf{f} \cdot d \mathbf{r}=\iint_{S}(\nabla \wedge \mathbf{f}) \cdot \mathbf{n} d S
$$

- If $\omega=f_{1} d y \wedge d z+f_{2} d z \wedge d x+f_{3} d x \wedge d y$ then

$$
d \omega=\left(\partial_{x} f_{1}+\partial_{y} f_{2}+\partial_{z} f_{3}\right) d x \wedge d y \wedge d z
$$

which gives rise to the divergence theorem:

$$
\iiint_{V} \nabla \cdot \mathbf{f} d x d y d z=\iint_{S} \mathbf{f} \cdot \mathbf{n} d S .
$$

Hodge *

- Define the totally anti-symmetric tensor

$$
\epsilon_{\mu_{1} \mu_{2} \ldots \mu_{m}}= \begin{cases}+1 & \text { if }\left(\mu_{1} \mu_{2} \ldots \mu_{m}\right) \text { is an even permutation of }(12 \ldots m) \\ -1 & \text { if }\left(\mu_{1} \mu_{2} \ldots \mu_{m}\right) \text { is an odd permutation of }(12 \ldots m) \\ 0 & \text { otherwise. }\end{cases}
$$

- The Hodge $*$ is a linear map $*: \Omega^{r}(M) \rightarrow \Omega^{m-r}(M)$ which acts on a basis vector of $\Omega^{r}(M)$ via

$$
*\left(d x^{\mu_{1}} \wedge \ldots d x^{\mu_{r}}\right)=\frac{\sqrt{|g|}}{m!} \epsilon^{\mu_{1} \ldots \mu_{r}}{ }_{\nu_{r+1} \ldots \nu_{m}} d x^{\nu_{r+1}} \wedge \cdots \wedge d x^{\nu_{m}}
$$

- The invariant volume element is

$$
* 1=\sqrt{|g|} d x^{1} \wedge \ldots d x^{m}
$$

- Examples for \mathbb{R}^{3} :

$$
\begin{aligned}
& * 1=d x \wedge d y \wedge d z, * d x=d y \wedge d z, * d y=d z \wedge d x, * d z=d x \wedge d y \\
& * d y \wedge d z=d x, * d z \wedge d x=d y, * d x \wedge d y=d z, * d x \wedge d y \wedge d z=1
\end{aligned}
$$

Inner product on r-forms

- Here we assume that (M, g) is Riemannian, then

$$
* * \omega=(-1)^{r(m-r)} \omega .
$$

- Let

$$
\omega=\frac{1}{r!} \omega_{\mu_{1} \ldots \mu_{r}} d x^{m u_{1}} \wedge \cdots \wedge d x^{\mu_{r}} \text { and } \eta=\frac{1}{r!} \eta_{\mu_{1} \ldots \mu_{r}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{r}}
$$

then

$$
\omega \wedge * \eta=\cdots=\frac{1}{r!} \omega_{\mu_{1} \ldots \mu_{r}} \eta^{\mu_{1} \ldots \mu_{r}} \sqrt{|g|} d x^{1} \wedge \cdots \wedge d x^{m}
$$

- We can define an inner product on r-forms via

$$
(\omega, \eta)=\int_{M} \omega \wedge * \eta .
$$

- Note: $(\omega, \eta)=(\eta, \omega)$ and this inner product is positive definite ($(\alpha, \alpha) \geq 0$ with equality only for $\alpha=0$).

Laplacian on p-forms

- Given the exterior derivative $d: \Omega^{r-1}(M) \rightarrow \Omega^{r}(M)$ we can define the adjoint exterior derivative $d^{\dagger}: \Omega^{r}(M) \rightarrow \Omega^{r-1}(M)$ via

$$
d^{\dagger}=(-1)^{m r+m+1} * d *
$$

- Let (M, g) be compact, orientable and without boundary, and $\alpha \in \Omega^{r}(M)$, $\beta \in \Omega^{r-1}(M)$ then

$$
(d \beta, \alpha)=\left(\beta, d^{\dagger} \alpha\right) .
$$

- The Laplacian $\triangle: \Omega^{r}(M) \rightarrow \Omega^{r}(M)$ is define by

$$
\Delta=\left(d+d^{\dagger}\right)^{2}=d d^{\dagger}+d^{\dagger} d
$$

- Example: Laplacian on functions:

$$
\Delta f=\cdots=-\frac{1}{\sqrt{|g|}} \partial_{\nu}\left(\sqrt{|g|} g^{\mu \nu} \partial_{\mu} f\right) .
$$

Hodge decomposition theorem

- An r-form ω_{r} is called harmonic if $\Delta w_{r}=0$.
- Hodge decomposition theorem:

$$
\Omega^{r}(M)=d \Omega^{r-1}(M) \oplus d^{\dagger} \Omega^{r+1} \oplus \operatorname{Harm}^{r}(M)
$$

that is

$$
w_{r}=d \alpha_{r-1}+d^{\dagger} \beta_{r+1}+\gamma_{r}
$$

with $\Delta \gamma_{r}=0$.

- Note $\operatorname{Harm}^{r}(M)$ is isomorphic to the de Rham cohomology group $H^{r}(M)$.
- The four Maxwell equations can be written as

$$
\nabla \cdot \mathbf{E}=\rho, \quad \nabla \wedge \mathbf{B}-\frac{\partial \mathbf{E}}{\partial t}=\mathbf{j} .
$$

and

$$
\nabla \cdot \mathbf{B}=0, \quad \nabla \wedge \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0
$$

where

$$
\mathbf{E}=-\nabla A_{0}-\frac{\partial \mathbf{A}}{\partial t} \quad \text { and } \quad \mathbf{B}=\nabla \wedge \mathbf{A} .
$$

- In differential geometry notation we have $F=d A$. The Maxwell equations are

$$
d F=0 \quad \text { and } \quad d^{\dagger} F=j .
$$

Complex Manifolds

- A complex manifold is a manifold such that the crossover maps $\psi_{i j}$ are all holomorphic.
- Recall: Let $z=x+i y$ and $f=u+i v$ then $f(x, y)$ is holomorphic in z provided the Cauchy-Riemann equations are satisfied:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

- Examples of complex manifolds are $\mathbb{C}^{n}, S^{2}, T^{2}, \mathbb{C} P^{n}$, $S^{2 n+1} \times S^{2 m+1}$.

Almost complex structure

- An almost complex structure is a $(1,1)$ tensor which acts on real coordinates as

$$
J_{p} \frac{\partial}{\partial x^{\mu}}=\frac{\partial}{\partial y^{\mu}}, \quad J_{p} \frac{\partial}{\partial y^{\mu}}=-\frac{\partial}{\partial x^{\mu}} .
$$

with $J_{p}{ }^{2}=-i d T_{T_{p} M}$.

- On complex coordinates vector we have

$$
J_{p} \frac{\partial}{\partial z^{\mu}}=i \frac{\partial}{\partial z^{\mu}}, \quad J_{p} \frac{\partial}{\partial \bar{z}^{\mu}}=-i \frac{\partial}{\partial \bar{z}^{\mu}} .
$$

(multiplication by i).

Hermitian metrics

- A Hermitian metric is a Riemannian metric which satisfies

$$
g_{p}\left(J_{p} X, J_{p} Y\right)=g_{p}(X, Y)
$$

i.e. g is compatible with J_{p}.

- The vector $J_{p} X$ is orthogonal to X wrt g :

$$
g_{p}\left(J_{p} X, X\right)=g_{p}\left(J_{p}^{2} X, J_{p} X\right)=-g_{p}\left(J_{p} X, X\right)=0 .
$$

- For a Hermitian metric $g_{\mu \nu}=0$ and $g_{\bar{\mu} \bar{\nu}}=0$, e.g.

$$
g_{\mu \nu}=g\left(\frac{\partial}{\partial z^{\mu}}, \frac{\partial}{\partial z^{\nu}}\right)=g\left(J_{p} \frac{\partial}{\partial z^{\mu}}, J_{p} \frac{\partial}{\partial z^{\nu}}\right)=g\left(i \frac{\partial}{\partial z^{\mu}}, i \frac{\partial}{\partial z^{\nu}}\right)=-g_{\mu \nu} .
$$

- Define the tensor field Ω via

$$
\Omega_{p}(X, Y)=g_{p}\left(J_{p} X, Y\right), \quad X, Y \in T_{p} M .
$$

- Ω is antisymmetric and invariant under J_{p} :

$$
\Omega(X, Y)=-\Omega(Y, X), \quad \Omega\left(J_{p} X, J_{p} Y\right)=\Omega(X, Y)
$$

- Ω is a real form and can be written as

$$
\Omega=-i g_{\mu \bar{\nu}} d z^{\mu} \wedge d \bar{z}^{\nu} .
$$

- $\Omega \wedge \cdots \wedge \Omega$ ($\operatorname{dim}_{\mathbb{C}} M$-times) provides a volume form for M.
- If $d \Omega=0$ then g is a Kähler metric.

