Applications of Differential Geometry to Mathematical Physics

Steffen Krusch
IMSAS, University of Kent

20 October, 2010

Outline

- Manifolds
- Fibre bundles
- Vector bundles, principal bundles
- Sections in fibre bundles
- Metric, Connection
- General Relativity, Yang-Mills theory

The 2-sphere S^{2}

- $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{i}^{2}=1\right\}$.
- Polar coordinates:

$$
\begin{aligned}
& x_{1}=\cos \phi \sin \theta \\
& x_{2}=\sin \phi \sin \theta \\
& x_{3}=\cos \theta
\end{aligned}
$$

- Problem: We can't label S^{2} with single coord system such that
(1) Nearby points have nearby coords.
(2) Every point has unique coords.

$$
\begin{aligned}
x_{1} & =\frac{x_{1}}{1-x_{3}}, \\
x_{2} & =\frac{x_{2}}{1-x_{3}} .
\end{aligned}
$$

Def: M is an m-dimensional (differentiable) manifold if

- M is a topological space.
- M comes with family of charts $\left\{\left(U_{i}, \phi_{i}\right)\right\}$ known as atlas.
- $\left\{U_{i}\right\}$ is family of open sets covering $M: \bigcup_{i} U_{i}=M$.
- ϕ_{i} is homeomorphism from U_{i} onto open subset U_{i}^{\prime} of \mathbb{R}^{m}.
- Given $U_{i} \cap U_{j} \neq \emptyset$, then the map

$$
\psi_{i j}=\phi_{i} \circ \phi_{j}^{-1}: \phi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \phi_{i}\left(U_{i} \cap U_{j}\right)
$$

is $C^{\infty} . \psi_{i j}$ are called crossover maps.

Picture

- Projection from North pole:

$$
\begin{aligned}
& x_{1}=\frac{x_{1}}{1-x_{3}} \\
& x_{2}=\frac{x_{2}}{1-x_{3}} .
\end{aligned}
$$

- $U_{1}=S^{2} \backslash N, U_{1}^{\prime}=\mathbb{R}^{2}$: $\phi_{1}: U_{1} \rightarrow \mathbb{R}^{2}:$ $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(X_{1}, X_{2}\right)$
- Projection from South pole:

$$
\begin{aligned}
& Y_{1}=\frac{x_{1}}{1+x_{3}}, \\
& Y_{2}=\frac{x_{2}}{1+x_{3}} .
\end{aligned}
$$

- $U_{2}=S^{2} \backslash S, U_{2}^{\prime}=\mathbb{R}^{2}$:

$$
\begin{aligned}
\phi_{2}: U_{2} & \rightarrow \mathbb{R}^{2}: \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

Crossover map $\psi_{21}=\phi_{2} \circ \phi_{1}^{-1}$:
$\psi_{21}: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2}:\left(X_{1}, X_{2}\right) \mapsto\left(Y_{1}, Y_{2}\right)=\left(\frac{X_{1}}{X_{1}^{2}+X_{2}^{2}}, \frac{-X_{2}}{X_{1}^{2}+X_{2}^{2}}\right)$.

Example: S^{3}

- Stereographic coords for S^{3} work the same way as for S^{2}, e.g.

$$
x_{i}=\frac{x_{i}}{1-x_{4}},
$$

where $i=1,2,3$ for the projection from the "North pole".

- Note S^{3} can be identified with $S U(2)$, i.e. complex 2×2 matrices which satisfy

$$
\begin{equation*}
U U^{\dagger}=U^{\dagger} U=1 \quad \text { and } \quad \operatorname{det} U=1 . \tag{1}
\end{equation*}
$$

Setting

$$
U=\left(\begin{array}{cc}
z_{1} & z_{2} \\
-\bar{z}_{2} & \bar{z}_{1}
\end{array}\right)
$$

satisfies all the conditions in (1) provided

$$
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1,
$$

which is the equation for S^{3}.

- Often manifolds can be build up from smaller manifolds.
- An important example is the Cartesian product: $E=B \times F$ (known as trivial bundle)
- Fibre bundles are manifolds which look like Cartesian products, locally, but not globally.
- This concept is very useful for physics. Non-trivial fibre bundles occur for example in general relativity, but also due to boundary conditions "at infinity".

Def: A fibre bundle (E, π, M, F, G) consists of

- A manifold E called total space, a manifold M called base space and a manifold F called fibre (or typical fibre)
- A surjection $\pi: E \rightarrow M$ called the projection. The inverse image of a point $p \in M$ is called the fibre at p, namely $\pi^{-1}(p)=F_{p} \cong F$.
- A Lie group G called structure group which acts on F on the left.
- A set of open coverings $\left\{U_{i}\right\}$ of M with diffeomorphism $\phi_{i}: U_{i} \times F \rightarrow \pi^{-1}\left(U_{i}\right)$, such that $\pi \circ \phi_{i}(p, f)=p$. The map is called the local trivialization, since ϕ_{i}^{-1} maps $\pi^{-1}\left(U_{i}\right)$ to $U_{i} \times F$.
- Transition functions $t_{i j}: U_{i} \cap U_{j} \rightarrow G$, such that $\phi_{j}(p, f)=\phi_{i}\left(p, t_{i j}(p) f\right)$. Fix p then $t_{i j}=\phi_{i}^{-1} \circ \phi_{j}$.

The importance of the transition functions

- Consistency conditions (ensure $t_{i j} \in G$)

$$
\begin{array}{ll}
t_{i i}(p)=e & p \in U_{i} \\
t_{i j}(p)=t_{j i}^{-1}(p) & p \in U_{i} \cap U_{j} \\
t_{i j}(p) \cdot t_{j k}(p)=t_{i k}(p) & p \in U_{i} \cap U_{j} \cap U_{k}
\end{array}
$$

- If all transition functions are the identity map e, then the fibre bundle is called the trivial bundle, $E=M \times F$.
- The transition functions of two local trivializations $\left\{\phi_{i}\right\}$ and $\{\tilde{\phi}\}$ for fixed $\left\{U_{i}\right\}$ are related via

$$
\tilde{t}_{i j}(p)=g_{i}^{-1}(p) \cdot t_{i j}(p) \cdot g_{j}(p) .
$$

where for fixed p, we define $g_{i}: F \rightarrow F: g_{i}=\phi_{i}^{-1} \circ \tilde{\phi}_{i}$.

- For the trivial bundle, $t_{i j}(p)=g_{i}^{-1}(p) \cdot g_{j}(p)$.
- Given a curve $c:(-\epsilon, \epsilon) \rightarrow M$ and a function $f: M \rightarrow \mathbb{R}$, we define the tangent vector $X[f]$ at $c(0)$ as directional derivative of $f(c(t))$ along $c(t)$ at $t=0$, namely

$$
X[f]=\left.\frac{d f(c(t))}{d t}\right|_{t=0}
$$

- In local coords, this becomes

$$
\left.\frac{\partial f}{\partial x^{\mu}} \frac{d x^{\mu}(c(t))}{d t}\right|_{t=0}
$$

hence

$$
X[f]=X^{\mu}\left(\frac{\partial f}{\partial x^{\mu}}\right) .
$$

- To be more mathematical, the tangent vector are defined via equivalence classes of curves.

More about Tangent vectors

- Vectors are independent of the choice of coordinates, hence

$$
X=X^{\mu} \frac{\partial}{\partial x^{\mu}}=\tilde{X}^{\mu} \frac{\partial}{\partial y^{\mu}}
$$

- The components of X^{μ} and \tilde{X}^{μ} are related via

$$
\tilde{X}^{\mu}=X^{\nu} \frac{\partial y^{\mu}}{\partial x^{\nu}} .
$$

- It is very useful to define the pairing

$$
\left\langle d x^{\nu}, \frac{\partial}{\partial x^{\mu}}\right\rangle=\frac{\partial x^{\nu}}{\partial x^{\mu}}=\delta_{\mu}^{\nu} .
$$

- This leads us to one-forms $\omega=\omega_{\mu} d x^{\mu}$, also independent of choice of coordinates. Now, we have

$$
\omega=\omega_{\mu} d x^{\mu}=\tilde{\omega}_{\nu} d y^{\nu} \quad \Longrightarrow \quad \tilde{\omega}_{\nu}=\omega_{\mu} \frac{\partial x^{\mu}}{\partial y^{\nu}}
$$

- This can be generalized further to tensors $T^{\mu_{1} \ldots \mu_{q}}{ }_{\nu_{1} \ldots \nu_{r}}$.
- At each point $p \in M$ all the tangent vectors form an n dimensional vector space $T_{p} M$, so tangent vectors can be added and multiplied by real numbers:

$$
\alpha X_{1}+\beta X_{2} \in T_{p} M \quad \text { for } \alpha, \beta \in \mathbb{R}, \quad X_{1}, X_{2} \in T_{p} M .
$$

- A basis of $T_{p} M$ is given by $\partial / \partial x^{\mu},(1 \leq \mu \leq n)$, hence $\operatorname{dim} M=\operatorname{dim} T_{p} M$.
- The union of all tangent spaces forms the tangent bundle

$$
T M=\bigcup_{p \in M} T_{p} M .
$$

- $T M$ is a $2 n$ dimensional manifold with base space M and fibre \mathbb{R}^{n}. It is an example of a vector bundle.
- We use the two stereographic projections as our charts.
- The coords $\left(X_{1}, X_{2}\right) \in U_{1}^{\prime}$ and $\left(Y_{1}, Y_{2}\right) \in U_{2}^{\prime}$ are related via

$$
Y_{1}=\frac{X_{1}}{X_{1}^{2}+X_{2}^{2}}, \quad Y_{2}=\frac{-X_{2}}{X_{1}^{2}+X_{2}^{2}} .
$$

- Given $u \in T S^{2}$ with $\pi(u)=p \in U_{1} \cap U_{2}$, then the local trivializations ϕ_{1} and ϕ_{2} satisfy $\phi_{1}^{-1}(u)=\left(p, V_{1}^{\mu}\right)$ and $\phi_{2}^{-1}(u)=\left(p, V_{2}^{\mu}\right)$. The local trivialization is

$$
t_{12}=\frac{\partial\left(Y_{1}, Y_{2}\right)}{\partial\left(X_{1}, X_{2}\right)}=\frac{1}{\left(X_{1}^{2}+X_{2}^{2}\right)^{2}}\left(\begin{array}{cc}
X_{2}^{2}-X_{1}^{2} & -2 X_{1} X_{2} \\
-2 X_{1} X_{2} & X_{1}^{2}-X_{2}^{2}
\end{array}\right) .
$$

- Check: $t_{21}(p)=t_{12}^{-1}(p)$.

Example: $U(1)$ bundle over S^{2}

- Consider a fibre bundle with fibre $U(1)$ and base space S^{2}.
- Let $\left\{U_{N}, U_{S}\right\}$ be an open covering of S^{2} where

$$
\begin{aligned}
& U_{N}=\{(\theta, \phi): 0 \leq \theta<\pi / 2+\epsilon, 0 \leq \phi<2 \pi\} \\
& U_{S}=\{(\theta, \phi): \pi / 2-\epsilon<\theta \leq \pi, 0 \leq \phi<2 \pi\}
\end{aligned}
$$

- The intersection $U_{N} \cap U_{S}$ is a strip which is basically the equator. Local trivializations are

$$
\phi_{N}^{-1}(u)=\left(p, e^{i \alpha_{N}}\right), \quad \phi_{S}^{-1}(u)=\left(p, e^{i \alpha_{S}}\right)
$$

where $p=\pi(u)$.

- Possible transition functions are $t_{N S}=e^{i n \phi}$, where $n \in \mathbb{Z}$.
- The fibre coords in $U_{N} \cap U_{S}$ are related via

$$
e^{i \alpha_{N}}=e^{i n \phi} e^{i \alpha_{S}}
$$

- If $n=0$ this is the trivial bundle $P_{0}=S^{2} \times S^{1}$. For $n \neq 0$ the $U(1)$ bundle P_{n} is twisted.

Magnetic monopoles and the Hopf bundle

- P_{n} is an example of a principal bundle because the fibre is the same as the structure group $G=U(1)$.
- In physics, P_{n} is interpreted as a magnetic monopole of charge n.
- Given $S^{3}=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}$ we can define the Hopf map: $\pi: S^{3} \rightarrow S^{2}$ by

$$
\begin{aligned}
& \xi_{1}=2\left(x_{1} x_{3}+x_{2} x_{4}\right) \\
& \xi_{2}=2\left(x_{2} x_{3}-x_{1} x_{4}\right) \\
& \xi_{3}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2} .
\end{aligned}
$$

which implies $\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}=1$.

- It turns out that with this choice of coords S^{3} can be identified with P_{1}, a nontrivial $U(1)$ bundle over S^{2}, known as the Hopf bundle.

Def: Let (E, M, π) be a fibre bundle. A section $s: M \rightarrow E$ is a smooth map which satisfies $\pi \circ s=i d_{M}$. Here, $\left.s\right|_{p}$ is an element of the fibre $F_{p}=\pi^{-1}(p)$. The space of section is denoted by $\Gamma(E)$.

- A local section is defined on $U \subset M$, only.
- Note that not all fibre bundles admit global sections!
- Example: The wave function $\psi(\mathbf{x}, t)$ in quantum mechanics can be thought of as a section of a complex line bundle $E=\mathbb{R}^{3,1} \times \mathbb{C}$.
- Vector fields associate a tangent vector to each point in M. They can be thought of as sections of TM.

More on sections

- Vector bundles always have at least one section, the null section s_{0} with

$$
\phi_{i}^{-1}\left(s_{0}(p)\right)=(p, 0)
$$

in any local trivialization.

- A principal bundle E only admits a global section if it is trivial: $E=M \times F$.
- A section in a principal bundle can be used to construct the trivialization of the bundle which uses that we can define a right action which is independent of the local trivialization:

$$
u a=\phi\left(p, g_{i} a\right), \quad a \in G
$$

Associated Vector bundle

- Given a principal fibre bundle $P(M, G, \pi)$ and a k-dimensional vector space V, and let ρ be a k dimensional representation of G then the associated vector bundle $E=P \times_{\rho} V$ is defined by identifying the points

$$
(u, v) \quad \text { and } \quad\left(u g, \rho(g)^{-1} v\right) \in P \times V
$$

where $u \in P, g \in G$, and $v \in V$.

- The projection $\pi_{E}: E \rightarrow M$ is defined by $\pi_{E}(u, v)=\pi(u)$, which is well defined because

$$
\pi_{E}\left(u g, \rho(g)^{-1} v\right)=\pi(u g)=\pi(u)=\pi_{E}(u, v)
$$

- The transition functions of E are given by $\rho\left(t_{i j}(p)\right)$ where $t_{i j}(p)$ are the transition functions of P.
- Conversely, a vector bundle naturally induces a principal bundle associated with it.

Metric

- Manifolds can carry further structure, for example a metric.
- A metric g is a $(0,2)$ tensor which satisfies at each point $p \in M$:
(1) $g_{p}(U, V)=g_{p}(V, U)$
(2) $g_{p}(U, U) \geq 0$, with equality only when $U=0$.
where $U, V \in T_{p} M$.
- The metric g provides an inner product for each tangent space $T_{p} M$.
- Notation:

$$
g=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

- If M is a submanifold of N with metric g_{N} and $f: M \rightarrow N$ is the embedding map, then the induced metric g_{M} is

$$
g_{M \mu \nu}(x)=g_{N \alpha \beta}(f(x)) \frac{\partial f^{\alpha}}{\partial x^{\mu}} \frac{\partial f^{\beta}}{\partial x^{\nu}}
$$

Connection for the Tangent bundle

- Consider the "derivative" of a vector field $V=V^{\mu} \frac{\partial}{\partial x^{\mu}}$ w.r.t. x^{ν} :

$$
\frac{\partial V^{\mu}}{\partial x^{\nu}}=\lim _{\Delta x \rightarrow 0} \frac{V^{\mu}\left(\ldots, x^{\nu}+\Delta x^{\nu}, \ldots\right)-V^{\mu}\left(\ldots, x^{\nu}, \ldots\right)}{\Delta x^{\nu}}
$$

- This doesn't work as the first vector is defined at $x+\Delta x$ and the second at x.
- We need to transport the vector V^{μ} from x to $x+\Delta x$ "without change". This is known as parallel transport.
- This is achieved by specifying a connection $\Gamma^{\mu}{ }_{\nu \lambda}$, namely the parallel transported vector \tilde{V}^{μ} is given by

$$
\tilde{V}^{\mu}(x+\Delta x)=V^{\mu}(x)-V^{\lambda}(x) \Gamma^{\mu}{ }_{\nu \lambda}(x) \Delta x^{\nu} .
$$

- The covariant derivative of V w.r.t. x^{ν} is

$$
\lim _{\Delta x^{\nu} \rightarrow 0} \frac{V^{\mu}(x+\Delta x)-\tilde{V}^{\mu}(x+\Delta x)}{\Delta x^{\nu}}=\frac{\partial V^{\mu}}{\partial x^{\nu}}+V^{\lambda} \Gamma^{\mu}{ }_{\nu \lambda} .
$$

- We demand that the metric g is covariantly constant.
- This means, if two vectors X and Y are parallel transported along any curve, then the inner product $g(X, Y)$ remains constant.
- The condition

$$
\nabla_{v}(g(X, Y))=0
$$

gives us the Levi-Civita connection.

- The Levi-Civita connection can be written as

$$
\Gamma^{\kappa}{ }_{\mu \nu}=\frac{1}{2} g^{\kappa \lambda}\left(\partial_{\mu} g_{\nu \lambda}+\partial_{\nu} g_{\mu \lambda}-\partial_{\lambda} g_{\mu \nu}\right) .
$$

General Relativity

- The Levi-Civita connection doesn't transform like a tensor. However, from it, we can build the curvature tensor:

$$
R^{\kappa}{ }_{\lambda \mu \nu}=\partial_{\mu} \Gamma^{\kappa}{ }_{\nu \lambda}-\partial_{\nu} \Gamma^{\kappa}{ }_{\mu \lambda}+\Gamma^{\eta}{ }_{\nu \lambda} \Gamma^{\kappa}{ }_{\mu \eta}-\Gamma^{\eta}{ }_{\mu \lambda} \Gamma^{\kappa}{ }_{\nu \eta} .
$$

- Important contractions of the curvature tensor are the Ricci tensor Ric:

$$
R i c_{\mu \nu}=R^{\lambda}{ }_{\mu \lambda \nu} .
$$

and the scalar curvature \mathcal{R} :

$$
\mathcal{R}=g^{\mu \nu} R i c_{\mu \nu} .
$$

- Now, we have the ingredients for Einstein's Equations of General Relativity, namely

$$
R i c_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \mathcal{R}=8 \pi G T_{\mu \nu},
$$

where G is the gravitational constant and $T_{\mu \nu}$ is the energy momentum tensor which describes the distribution of matter.

Yang-Mills theory

- An example of Yang-Mills theory is given by the following Lagrangian density,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{8} \operatorname{Tr}\left(\mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}\right)+\frac{1}{2}\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi-U\left(\Phi^{\dagger} \Phi\right) . \tag{2}
\end{equation*}
$$

where

$$
D_{\mu} \Phi=\partial_{\mu} \Phi+\mathbf{A}_{\mu} \Phi \quad \text { and } \quad \mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}+\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right] .
$$

- Here Φ is a two component complex scalar field.
- \mathbf{A}_{μ} is called a gauge field and is $s u(2)$-valued, i.e. \mathbf{A}_{μ} are anti-hermitian 2×2 matrices.
- $\mathbf{F}_{\mu \nu}$ is known as the field strength (also $s u(2)$-valued)
- This Lagrangian is Lorentz invariant.

Gauge invariance

Lagrangian (2) is also invariant under local gauge transformations:

- Let $g \in S U(2)$ be a space-time dependent gauge transformation with

$$
\Phi \mapsto g \Phi, \quad \text { and } \quad \mathbf{A}_{\mu} \mapsto g \mathbf{A}_{\mu} g^{-1}-\partial_{\mu} g g^{-1} .
$$

- The covariant derivative $D_{\mu} \Phi$ transforms as

$$
\begin{aligned}
D_{\mu} \Phi & \mapsto \partial_{\mu}(g \Phi)+\left(g \mathbf{A}_{\mu} g^{-1}-\partial_{\mu} g g^{-1}\right) g \Phi \\
& =g D_{\mu} \Phi
\end{aligned}
$$

- Hence $\Phi^{\dagger} \Phi \mapsto(g \Phi)^{\dagger} g \Phi=\Phi^{\dagger} g^{\dagger} g \Phi=\Phi^{\dagger} \Phi$, and similarly for $\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi$.
- Finally, $\mathbf{F}_{\mu \nu} \mapsto g \mathbf{F}_{\mu \nu} g^{-1}$, so

$$
\operatorname{Tr}\left(\mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}\right)
$$

is also invariant

Yang-Mills theory and Fibre bundles

In a more mathematical language:

- The gauge field \mathbf{A}_{μ} corresponds to the connection of the principal SU(2) bundle.
- The field strength $\mathbf{F}_{\mu \nu}$ corresponds to the curvature of the principal SU(2) bundle.
- The complex scalar field Φ is a section of the associated \mathbb{C}^{2} vector bundle.
- The action of $g \in S U(2)$ on Φ and \mathbf{A}_{μ} is precisely what we expect for an associated fibre bundle.
- Surprisingly, mathematicians and physicist derived the same result very much independently!

