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Abstract. Although the concept of Batch Markovian Arrival Processes (BMAPs) has gained
widespread use in stochastic modelling of communication systems and other application areas,
there are few statistical methods of parameter estimation proposed yet. However, in order to
practically use BMAPs for modelling, statistical model fitting from empirical time series is
an essential task. The present paper contains a specification of the classical EM algorithm
for MAPs and BMAPs as well as a performance comparison to the computationally simpler
estimation procedure recently proposed by Breuer and Gilbert. Furthermore, it is shown how
to adapt the latter to become an estimator for hidden Markov models.
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1. Introduction

Markovian Arrival Processes (MAPs) and Batch Markovian Arrival Processes
(BMAPs) have been introduced by Neuts (1979) and Lucantoni (1991) in
order to provide input streams for queueing systems which are Markovian
(and hence analytically more tractable) on the one hand but very versatile
(even dense in the class of point processes, see Asmussen andKoole (1993))
on the other hand. This concept has proved very successful inqueueing theory
for more than twenty years now. For a bibliography demonstrating this, see
Lucantoni (1993).

Although the concept of BMAPs has gained widespread use in stochastic
modelling of communication systems and other application areas, there are
few statistical methods of parameter estimation proposed yet. A survey of
estimation methods is given in Asmussen (1997). His emphasis is on max-
imum likelihood estimation and its implementation via the EM algorithm.
For the Markov Modulated Poisson Process (MMPP), an EM algorithm has
been developed by Ryden (1993; 1994; 1996; 1997), whereas Asmussen et
al. (1996) derived a fitting procedure for phase-type distributions via the EM
algorithm. The single existing likelihood–oriented procedure that has been
introduced for BMAPs up to now can be found in Breuer and Gilbert (2000)
or Breuer (2000b) (see Breuer (2000a) for a special case).

However, in order to practically use BMAPs for modelling, statistical
model fitting from empirical time series is an essential task. The present
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2 L. Breuer

paper contains a specification of the classical EM algorithm(see Dempster
et al. (1977)) for MAPs and BMAPs as well as a performance comparison
to the computationally simpler estimation procedure proposed in Breuer and
Gilbert (2000). In section 2, the EM algorithm will be specified for MAPs and
BMAPs. Section 3 contains a short description of the estimation procedure
for BMAPs introduced in Breuer and Gilbert (2000). In section 4 numerical
results of the two procedures are compared. Finally, section 5 provides an
adaptation of the procedure given in section 3 to the class ofhidden Markov
models. In order to understand the details of the estimationprocedures to be
introduced in the present paper, it is strongly recommendedto be familiar
with former EM specifications for PH distributions (see Asmussen (1996))
and for the MMPP (see Ryden (1996)), which is a special case ofthe MAP.

Assume that the empirical information observed from an input stream into
a queueing system consists of the time instants(T1; : : : ; TN ) of single arrivals
(for MAPs) or the time instants(T1; : : : ; TN ) of arrivals together with their
batch sizes(b1; : : : ; bN ), with N denoting the number of observed arrivals.
The task is to find parametersD0 andD1 for a MAP (orD0;D1; : : : ;DM ,
with maximal batch sizeM , for a BMAP) that optimally fit this arrival stream.

In both estimation procedures that will be introduced, we fixthe number
of phases for the BMAP model to be a known integerm � 2. Procedures
for estimating the numberm of phases are discussed in Ryden (1997). A
feasible method without a prior estimation ofm is proposed in Jewell (1982)
as follows. Denote the estimators (as given by the EM algorithm and the
simpler procedure described below) for an assumed numbermk of phases
by (D̂0(k); D̂1(k); : : : ; D̂M (k)). Estimating the parameters by the methods
given below for increasingmk and stopping as soon as the likelihood ratiof(zjD̂0(k + 1); D̂1(k + 1); : : : ; D̂M (k + 1))f(zjD̂0(k); D̂1(k); : : : ; D̂M (k))
is smaller than a threshold value1 + " leads to a reasonable model fitting.
Since the adaptation of the model increases with the assumednumber of
phases, the likelihood gain is always positive. The threshold value reflects
the limit of accuracy beyond which the gain in model adaptation is not worth
the additional computation time.

This method has been applied to BMAP estimation via the procedure de-
scribed in section 3 by Breuer and Gilbert (2000). Many numerical results can
be found in Gilbert (2000). In particular, it can be seen there that the number
of phases of the estimated BMAP representation does not always coincide
with the number of phases of the input BMAP. Nevertheless, inthese cases
the likelihood of the arrival stream under the estimated representation is about
the same as the likelihood under the original input BMAP.
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EM for BMAPs 3

2. An EM algorithm for MAPs and BMAPs

The typical property of observing time series derived from aMAP (resp. a
BMAP) is that only the time instants of arrivals (and their batch sizes, resp.)
but not the phases can be seen. If the phases were observable,then one could
apply classical estimators for finite state Markov processes (see Albert (1962)
or Basawa, Rao (1980)) and the problem would be solved. Thus we have
a problem of estimation from incomplete data. For this type of statistical
problems, the so–called EM algorithm has proven to be a good means of ap-
proximating the maximum likelihood estimator (see Dempster et al. (1977),
McLachlan, Krishnan (1997) or Meng, Dyk (1997)). The name EMalgorithm
stems from the alternating application of an expectation step (for E) and a
maximization step (for M) which yield successively higher likelihoods of the
estimated parameters.

In this section we first describe the classical estimators which were ap-
plicable if we had the complete sample for a MAP (i.e. if phases were ob-
servable). Then we derive the specification of the EM algorithm for MAPs,
assuming that phases are not observable (incomplete sample). Finally, this
specification is extended to obtain an EM specification for BMAPs.

2.1. COMPLETE SAMPLE CASE FORMAPS

A sufficient statistic for the complete data sample would be the collectionS = (Jkn : 0 � n �Mk; 1 � k � N); (Skn : 0 � n �Mk � 1; 1 � k � N)
of random variables, whereJkn denotes the phase immediately after thenth
jump of the phase process in thekth interval between arrivals (i.e. in the
interval [Tk�1; Tk[), Mk the number of jumps in this interval (not including
the last jump accompanied by an arrival), andSkn the sojourn time after thenth jump of the phase process in the interval[Tk�1; Tk[.

Then the density of a complete samplex under parametersD0 = (D0;ij)
andD1 = (D1;ij) would be given byf(xjD0;D1) = mYi=1 exp (D0;iiZi) mYi=1 mYj=1;j 6=iDNij0;ij mYi=1 mYj=1DLij1;ij
whereZi denotes the total time spent in phasei, Nij the number of jumps
from phasei to phasej without accompanying arrival, andLij the number
of jumps from phasei to phasej with accompanying arrival. These variables
can be computed from the sufficient statistic byZi = NXk=1Mk�1Xn=0 1(Jkn=i)Skn; Nij = NXk=1Mk�1Xn=0 1(Jkn=i)1(Jkn+1=j)
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4 L. Breuer

and Lij = N�1Xk=1 1(JkMk=i)1(Jk+10 =j)
for 1 � i 6= j � m. Further defineYi = N�1Xk=1 Mk�1Xn=0 1(Jkn=i)Skn
for 1 � i �m.

Acknowledging the relationD0;ii = � �Pmj=1D1;ij +Pmj=1;j 6=iD0;ij�,

the maximum likelihood estimatorŝD0 andD̂1 for the matricesD0 andD1
would be D̂0;ij = NijZi ; D̂1;ij = LijYi ; (1)D̂0;ii = �0� mXj=1 D̂1;ij + mXj=1;j 6=i D̂0;ij1A (2)

for 1 � i; j � m, as given in Albert (1962).

2.2. EM FOR MAPS

In the case of observing only an incomplete samplez, the EM algorithm
provides an iteration of alternating expectation (E) and maximization (M)
steps that lead to a reevaluation of the estimators increasing their likelihoods
in every cycle of E- and M–step. In our case, the incomplete sampley consists
only of the sequence(T0 = 0; T1; : : : ; TN ) of inter–arrival times that are
observable. Keeping in mindT0 = 0, we will not lose information by settingz = (z1; : : : ; zN ) := (T1; T2 � T1; : : : ; Tn � TN�1).

Given the parametersD0 andD1 as well as an initial phase distribution�,
the likelihood of the incomplete samplez isf(zj�;D0;D1) = � N�1Yn=1 exp(D0zn)D1! exp(D0zN )� (3)

with � := D11m, denoting by1m the m–dimensional column vector with all
entries being 1.

Assume that the estimates after thekth EM iteration are given by the
matrices(D̂(k)0 ; D̂(k)1 ). Then in the first step of thek + 1st cycle, the con-
ditional expectations of the variablesZi, Nij andLij given the incomplete

observationy and the current estimates(D̂(k)0 ; D̂(k)1 ) are computed.
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In order to simplify notations, define�N (i) := mXj=1 D̂(k)1 (i; j) and �n�1(i) := D̂(k)1 exp(D̂(k)0 zn)�n (4)

for 2 � n � N andi = 1; : : : ;m.
Since the empirical time series is observed in a stationary regime, we can

set the phase distribution�0 at timeT0 = 0 to be the phase equilibrium,
i.e. satisfying�0(D̂(k)0 + D̂(k)1 ) = 0. Thus�0 is a deterministic function of(D̂(k)0 ; D̂(k)1 ) and in particularf(zj�0; D̂(k)0 ; D̂(k)1 ) = f(zjD̂(k)0 ; D̂(k)1 ) holds.
Next we define iteratively�n+1 := �n exp(D̂(k)0 zn+1) D̂(k)1 (5)

for 0 � n � N � 2, interpreting the�n as row vectors.
We can continue the E–step withZ(k+1)i := E(D̂(k)0 ;D̂(k)1 )(Zijz) = NXn=1E(D̂(k)0 ;D̂(k)1 )(Zni jz)

and Y (k+1)i := E(D̂(k)0 ;D̂(k)1 )(Yijz) = N�1Xn=1 E(D̂(k)0 ;D̂(k)1 )(Zni jz)
whereZni denotes the random variable of the total amount of time within[Tn�1; Tn[ that is spent in phasei. This is given byE(D̂(k)0 ;D̂(k)1 )(Zni jz) = 
n(i; ijz; D̂(k)0 ; D̂(k)1 )f(zjD̂(k)0 ; D̂(k)1 ) (6)

for all 1 � l � N , with 
n given as in definition (7) below. The derivation
of (6) is completely analogous to the one in Asmussen et al. (1996), p.439.
Likewise, the E–step forN (k+1)ij := E(D̂(k)0 ;D̂(k)1 )(Nij jz) = NXn=1E(D̂(k)0 ;D̂(k)1 )(Nnij jz)
with E(D̂(k)0 ;D̂(k)1 )(Nnij jz) = D̂(k)0;ij
n(i; jjz; D̂(k)0 ; D̂(k)1 )f(zjD̂(k)0 ; D̂(k)1 )
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for 1 � n � N is derived using completely the same arguments as in
Asmussen et al. (1996), p.440. Here, the matrix functions
n are defined as
n(i; jjz; D̂(k)0 ; D̂(k)1 ) := Z zn0 �n�1 exp (D(k)0 u)ei�� eTj exp (D(k)0 (z � u))�n du (7)

for 1 � n � N and1 � i; j � m.
The E–step is completed byL(k+1)ij := E(D̂(k)0 ;D̂(k)1 )(Lij jz) = N�1Xn=1 E(D̂(k)0 ;D̂(k)1 )(Lnij jz)

withE(D̂(k)0 ;D̂(k)1 )(Lnijjz) = P (JnMn = i; Jn+10 = jjz1; : : : ; zn; zn+1; : : : ; zN )= 1f(z)f(JnMn = i; z1; : : : ; zn)P (Jn+10 = jjJnMn = i)�� f(zn+1; : : : ; zN jJn+10 = j)= ��n�1 exp(D(k)0 zn)�i D̂(k)1 (i; j) �exp(D(k)0 zn+1)�n+1�jf(zjD̂(k)0 ; D̂(k)1 )
for 1 � n � N � 1.

The second step of thek + 1st cycle consists of the computation of max-
imum likelihood estimates given the new (conditional but complete) statistic
computed in the E–step. This can be done by simply replacing the variables in
equations (1) and (2) by the conditional expectations computed above. This
leads to reevaluated estimatesD̂(k+1)0;ij = N (k+1)ijZ(k+1)i ; D̂(k+1)1;ij = L(k+1)ijY (k+1)i ;
and D̂(k+1)0;ii = �0� mXj=1 D̂(k+1)1;ij + mXj=1;j 6=i D̂(k+1)0;ij 1A
for 1 � i; j � m.

Using these, one can compute the likelihoodf(zjD̂(k+1)0 ; D̂(k+1)1 ) of the
empirical time series under the new estimates according to equation (3). If
the likelihood ratio � = f(zjD̂(k+1)0 ; D̂(k+1)1 )f(zjD̂(k)0 ; D̂(k)1 )
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remains smaller than a threshold1 + ", then the EM iteration process can be
stopped, and the latest estimates may be adopted. The threshold value reflects
the limit of accuracy beyond which the gain in model adaptation is considered
not to be worth the additional computation time.

2.3. EM FOR BMAPS

Once we have obtained the above EM specification for MAPs, an extension
to BMAPs is straightforward. In the BMAP case we not only knowthe times(T1; : : : ; TN ) of arrivals but also the arrival sizes(b1; : : : ; bN ), meaning that
at time instantTn there was a batch arrival of sizebn, with n = 1; : : : ; N ,bn 2 IN . In order to obtain reasonable estimates, we need an upper boundM
such thatDn = 0 for all n � M . Furthermore, we need enough arrivals to
ensure that there are reasonably many arrival events of every size in the time
series.

Starting from thekth estimates(D̂(k)0 ; D̂(k)1 ; : : : ; D̂(k)M ) for (D0; : : : ;DM ),
thek + 1st EM iteration proceeds completely analogous as for MAPs, with
obvious adaptations in equations (3), (4) and (5). The only more substantial
difference is that for BMAPs we need to computeL(k+1)1;ij ; : : : ; L(k+1)M ;ij instead

of onlyL(k+1)ij . These are given similarly byL(k+1)s;ij := E(D̂(k)0 ;D̂(k)1 )(Ls;ijjz) = N�1Xn=1;bn=sE(D̂(k)0 ;D̂(k)1 )(Lns;ijjz)
for s = 1; : : : ;M , withE(D̂(k)0 ;D̂(k)1 )(Lns;ijjz) == ��n�1 exp(D(k)0 zn)�i D̂(k)s (i; j) �exp(D(k)0 zn+1)�n+1�jf(zjD̂(k)0 ; D̂(k)1 ; : : : ; D̂(k)M )
for 1 � n � N � 1.

These expectations lead to new estimatesD̂(k+1)s;ij = L(k+1)s;ijY (k+1)i
for s = 1; : : : ;M .
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3. A simpler estimation procedure

In Breuer, Gilbert (2000), a computationally much lighter estimation proce-
dure has been introduced. It works in three steps, each of which uses classical
statistical methods. In the first step (section 3.1), the empirical interarrival
times are used to estimate the matrixD0, neglecting the correlations between
consecutive interarrival times. Then those can be interpreted as a sample of
phase–type distributions and hence the entries ofD0 can be estimated by an
EM–algorithm for phase–type distributions (see Asmussen et al. (1996)). In
the second step (section 3.2), for every empirical arrival instant the proba-
bility distribution of being in a certain phase immediatelybefore resp. after
this instant is estimated using discriminant analysis (seeTitterington et al.
(1985)). In the last step (section 3.3), the derived estimators of the first two
steps are used in order to calculate the empirical estimatorfor the matricesDn, n � 1. This is done according to standard estimators for Markov chains
(see Anderson, Goodman (1957)).

3.1. ESTIMATING THE MATRIX D0
As in section 2, let(zn := Tn�Tn�1 : n 2 f1; : : : ; Ng) denote the empirical
interarrival times. Denote the number of phases bym. According to Baum
(1996), p.42, the interarrival times of a BMAP are distributed phase–type
with generatorD0. Hence the(zn : n 2 f1; : : : ; Ng) are a sample of a
phase–type distribution with densityz(t) = �eD0t�
for t 2 IR+. Here,� = (�1; : : : ; �m) is the steady–state distribution of the
phase process at arrival instants and� := �D01m is the so–called exit vector
of the phase–type distribution with representation(�;D0).

If m is known, there is a maximum likelihood estimator for� andD0. The
solution of the estimating equations can be approximated iteratively by an EM
algorithm (cf. Dempster et al. (1977) or McLachlan, Krishnan (1997)), which
was derived for this special case by Asmussen et al. (1996) and proceeds as
follows.

Starting from an intuitive first estimation(�(1);D(1)0 ) of the representation
of the phase–type distribution, the recursions�(k+1)i = 1N NXn=1 �(k)i b(k)i (zn)�(k)b(k)(zn)D(k+1)0;ij = NXn=1 D(k)0;ij
(k)ij (zn)�(k)b(k)(zn) , NXi=1 
(k)ii (zn)�(k)b(k)(zn)
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for i 6= j and �(k+1)i = NXn=1 �(k)i a(k)i (zn)�(k)b(k)(zn), NXi=1 
(k)ii (zn)�(k)b(k)(zn)
along with the relationD(k+1)0;ii = ��(k+1)i � mXj=1;j 6=iD(k+1)0;ij
and the definitionsa(k)(zn) := �(k)eD(k)0 znb(k)(zn) := eD(k)0 zn�(k)
(k)ij (zn) := Z zn0 �(k)eD(k)0 ueieTj eD(k)0 (zn�u)�(k) du
for i; j 2 f1; : : : ;mg und k 2 IN lead to monotonically increasing likeli-
hoods.

In Asmussen et al. (1996), it is proposed to compute the values ofa(k)(zn),b(k)(zn) and
(k)ij (zn) numerically as the solution to a linear system of homo-
geneous differential equations.

3.2. PHASES AT ARRIVAL INSTANTS

Using the estimator(�̂; D̂0) from the last section, the distribution of the non–
observable phases at times(Tn : n 2 IN) can be estimated using discriminant
analysis in a standard way (cf. Titterington et al. (1985), pp.168f).

For a given empirical arrival instantTn, let Zn := Tn � Tn�1 andRn�1
denote the random variables of the last interarrival time and of the phase
immediately after the last arrival instantTn�1, respectively. LetP (Zn; Rn�1)
denote their common distribution andP (ZnjRn�1), P (Rn�1jZn) the condi-
tional distributions.

Since(Zn : n 2 f1; : : : ; Ng) is given empirically by the time series(Tn :n 2 f0; : : : ; Ng), it suffices to estimate the distributionP (Rn�1jZn = zn)
for everyn 2 f1; : : : ; Ng. This distribution is discrete, because by assump-
tion there are only finitely many phases.

Bayes’ formula yields forj 2 f1; : : : ;mg andn 2 f1; : : : ; NgP (Rn�1 = jjZn = zn) = P (Zn = znjRn�1 = j) � P (Rn�1 = j)Pmi=1 P (Zn = znjRn�1 = i) � P (Rn�1 = i)
The expressionsP (ZnjRn�1) exist as conditional densities (with respect to
the Lebesgue measure onIR), since the interarrival timesZn are distributed
phase–type.
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The expressions on the right hand can be estimated via the estimated pa-
rameters(�̂; D̂0) and the resulting vector̂�. Hence, for every arrival instantTn�1 the estimator for the conditional distribution of the phaseatTn�1 given
the interarrival timeZn = Tn � Tn�1 is given byP̂ (Rn�1 = ijZn = zn) = eTi eD̂0zn �̂ � �̂iPmj=1 eTj eD̂0zn �̂ � �̂j = �̂i � eTi eD̂0zn �̂�̂eD̂0zn �̂
for everyi 2 f1; : : : ;mg andn 2 f1; : : : ; Ng.

Furthermore, it will be necessary to estimate the phase immediately before
an arrival instant. This can be done by the same method. Denote the respective
conditional distribution byP (Rn�jZn). Then we get the estimationP̂ (Rn� = ijZn = zn) = �̂eD̂0znei � �̂iPmj=1 �̂eD̂0znej � �̂j = �̂eD̂0znei � �̂i�̂eD̂0zn �̂
for everyi 2 f1; : : : ;mg andn 2 f1; : : : ; Ng.
3.3. ESTIMATING THE MATRICESDn FORn � 1
The matrices(Dn : n 2 IN0), which are the blocks of the generator matrixQ of a BMAP of orderm, have dimension(m�m) and the formDn(i; j) = �D0(i; i) � pi(n; j)
for everyi; j 2 f1; : : : ;mg.

In order to complete the estimation of the generator matrix,it suffices to
estimate the parameters(pi(n; j) : n 2 IN; i; j 2 f1; : : : ;mg), which are
the transition probabilities of the embedded Markov chain at arrival instants.
Without any further assumptions regarding these, use of theempirical esti-
mator is standard. This is given in Anderson, Goodman (1957). Since in the
present statistical model the phase process is hidden, the phase change at each
arrival instant cannot be observed but must be estimated. For this, the results
of the last section are used.

For everyk 2 f0; : : : ; N�1g, letRk andRk� denote the random variable
of the (non-observable) phase at the empirical arrival instantTk and immedi-
ately before it, respectively. In the last section, estimators for the conditional
distributions of theRk andRk� were given. LetÆ denote the Kronecker
function and remember thatbk denotes the size of thekth batch arrival. Defineni(n; j) := N�1Xk=1 P̂ (Rk� = ijZk = zk) � Æbk ;n � P̂ (Rk = jjZk+1 = zk+1)
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and ni := N�1Xk=1 P̂ (Rk� = ijZk = zk) = 1Xn=1 mXj=1ni(n; j)
for n 2 IN and i; j 2 f1; : : : ;mg. In a BMAP, the random variablesRk�
andRk are dependent in any non–trivial case. Since in the present model
the phases are non–observable, this dependency can only be reflected by
conditioning on the consecutive empirical interarrival timeszk andzk+1.

Because ofpi(n; j) = P (Rk� = i; bk = n;Rk = j)P (Rk� = i; bk � 1) � P (Rk� = i; bk � 1)P (Rk� = i)
for all k 2 f1; : : : ; N � 1g, the empirical estimator forpi(n; j) is given byp̂i(n; j) := ni(n; j)ni � �̂i�D̂0;ii
for everyn 2 IN andi; j 2 f1; : : : ;mg.

4. Numerical results and comparison of the two procedures

The following computations were done on a 500 MHz processor using the
programming language Octave (a free MatLab version) under Linux. Tables
1 through 3 are results from time series of 100 arrivals, while tables 4 through
6 give estimates from 500 arrivals. The numerical examples were only com-
puted for MAPs, since the estimator for BMAPs is essentiallythe same but
BMAPs would require much larger time series and thus longer run times. The
run times for the EM algorithm are further the main reason of not testing time
series with more arrivals.

At first glance it can be observed that higher likelihoods do not necessarily
mean that the estimated parameters are closer to the original parameters. As
a maximum likelihood estimator, the EM algorithm simply tries to find any
set of parameters which yields the highest likelihood of theobserved time
series. The numerical results show that the simpler estimator achieves almost
the same likelihood as the EM algorithm while performing much faster and
requiring less storage. Since phase–type distributions (and thus BMAPs) in
general have no unique representation (see e.g. Botta et al.(1987)), it is not
reasonable to search for such one. The aim of model fitting is simply to find
parameters for a BMAP that make the observed time series under the BMAP
model at least as likely as under the original parameters. Inall numerical
examples with time series derived from MAPs, this happened to be the case
for both procedures.
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Since MAPs are extensively used as models for arrival streams in queueing
systems, a more reasonable measure for the goodness-of-fit of the tested esti-
mation procedures might be a collection of performance measures for queues
with the respective inputs. One such performance measure isthe so–called
caudal characteristic� (see (Neuts, 1986) or (Latouche and Ramaswami,
1999)). The value of� is a good description of the tail behaviour of the
stationary distribution of the queue process.

In the following numerical examples, for every arrival process (as well as
for the estimators) the caudal characteristic� of the respectiveMAP=M=1
queue has been computed. This has been computed as the largest eigenvalue
of the rate matrixR of the QBD Markov chain embedded at jump times of
the queue (including phase changes). The rate of the exponential service time
distribution has been set to equal the highest arrival rate (i.e. the absolute
value of the lowest entry of the input MAP’sD0). The numerical results show
that the caudal characteristics computed from the two estimators are very
close and (except in tables 1 and 4) approximate the caudal characteristic of
the input MAP well enough.

The EM algorithm yields consistently higher likelihoods than the simpler
procedure. Yet, comparing the gain in likelihood per arrival and the total
run time, the question remains whether an EM procedure is worth the effort.
Although the likelihoods of the estimated parameters are satisfying for both
procedures, none of them can approach the original parameters in terms of a
maximal distance norm. This can be seen best from the estimated values forD1. However, in terms of the caudal characteristic for the respective queues
with exponential service time distribution, the goodness-of-fit is much better.
The EM algorithm uses all the available information in all iterations. Any
improvement of the procedure introduced in section 3 will perform at most
as good as the EM algorithm.

Table 1 Input MAP Estimation by EM Simple estimationD0 = -10.0 5.0 -10.5 5.4 -15.3 10.1
50.0 -100.0 30.4 -78.2 59.4 -104.2D1 = 4.0 1.0 2.8 2.2 2.6 2.7
10.0 40.0 26.7 21.1 22.1 22.7

run time: 6m 27s 1m 4s
likelihood: 3.58 E58 1.62 E59 9.86 E58� 0.2445 0.1777 0.1752
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Table 2 Input MAP Estimation by EM Simple estimationD0 = -5.0 2.0 -3.5 1.4 -5.0 2.5
5.0 -10.0 8.0 -21.4 5.1 -10.3D1 = 2.0 1.0 1.8 0.4 1.7 0.9
3.0 2.0 10.1 3.3 3.4 1.8

run time: 1m 9s 8s
likelihood: 9.08 E05 5.74 E06 1.51 E06� 0.3611 0.3583 0.3432

Tab 3 Input MAP Estimation by EM Simple estimationD0 = -5.0 1.0 1.0 -7.8 2.7 2.6 -11.9 4.0 4.0
2.0 -10.0 1.0 4.6 -14.7 4.3 6.2 -18.0 6.0

10.0 2.0 -20.0 6.7 6.3 -23.7 8.7 8.4 -25.5D1 = 2.0 1.0 0.0 0.9 0.8 0.8 1.7 1.2 0.9
2.0 4.0 1.0 2.0 1.8 2.0 2.6 1.8 1.4
1.0 5.0 2.0 3.6 3.3 3.7 3.8 2.6 2.0

time: 27m 56s 14s
likel.: 1.51 E26 3.43 E26 1.28 E26� 0.2627 0.2744 0.2684

Table 4 Input MAP Estimation by EM Simple estimationD0 = -10.0 5.0 -9.5 4.9 -11.2 7.0
50.0 -100.0 55.9 -119.9 67.2 -123.6D1 = 4.0 1.0 3.3 1.3 2.2 2.1
10.0 40.0 28.3 35.6 28.4 28.0

run time: 27m 12s 4m 14s
likelihood: 1.10 E269 1.17 E270 2.85 E269� 0.2445 0.2096 0.1816

Table 5 Input MAP Estimation by EM Simple estimationD0 = -5.0 2.0 -5.4 2.6 -5.6 2.7
5.0 -10.0 4.8 -10.2 5.0 -10.4D1 = 2.0 1.0 1.8 0.9 1.9 1.0
3.0 2.0 3.5 1.8 3.5 1.8

run time: 11m 43s 26s
likelihood: 3.59 E59 3.98 E59 3.91 E59� 0.3611 0.3456 0.3639
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Tab 6 Input MAP Estimation by EM Simple estimationD0 = -5.0 1.0 1.0 -5.7 1.8 1.9 -7.0 2.4 2.4
2.0 -10.0 1.0 4.8 -17.8 5.1 7.0 -21.2 6.1

10.0 2.0 -20.0 6.9 6.8 -24.6 10.3 8.7 -30.7D1 = 2.0 1.0 0.0 0.7 0.8 0.6 0.9 0.8 0.6
2.0 4.0 1.0 2.8 3.0 2.2 3.2 2.9 2.1
1.0 5.0 2.0 4.0 4.1 2.9 4.6 4.2 3.0

time: 51m 42s 2m 36s
likel.: 8.53 E117 4.90 E118 1.35 E118� 0.2627 0.2869 0.2845

5. Estimating hidden Markov models

There is a close relationship between MAPs and a very generalclass of
Markov chains called hidden Markov models (see e.g. Elliottet al. (1995)).
On the one hand, using the construction in Çinlar (1969), p.384f, one can
represent BMAPs as special hidden Markov models. On the other hand, the
estimation procedure described in section 3 can be adapted to general hid-
den Markov models in a straightforward manner. This shall beshown in the
present section.

A hidden Markov model is a two–dimensional Markov chainZ = (X;Y )= ((Xn; Yn) : n 2 IN ) with the following properties:
1. P (Xn+1jX1; : : : ;Xn) = P (Xn+1jXn), i.e. the marginal chainX is a

Markov chain with finite state spacef1; : : : ;mg. It is called the underlying
Markov chain or the regime ofZ. Let P 0 = (p0ij)1�i;j�m denote the true
transition matrix of the underlying Markov chainX. The space of all Markov
transition matrices of dimensionm shall be denoted byM1.

2.P (YnjX1; Y1; : : : ;Xn�1; Yn�1;Xn) = P (YnjXn), i.e. given the regimeX, the distributions ofYn, n 2 IN , are independent. Assume that the distri-
butionsP (YnjXn = i), i = 1; : : : ;m are all dominated by some measure�
and denote the�–density ofP (YnjXn = i) by f(:; �i), with �1; : : : ; �m 2 �,
calling�m the parameter space for the marginal chainY .

According to the construction in Çinlar (1969), p.384f, andgiven this defi-
nition of a hidden Markov model, the sample of a MAP would be represented
by the observable inter–arrival timesy1; : : : ; yN and the hidden variablesX1; : : : ;XN with Xn denoting the phases immediately after the adjacent
arrival instants. ThusXn = (i; j) means that immediately after arrival instantTn�1, the phase process was in statei, and immediately after arrival instantTn, the phase process was in statej. Then we haveP (Xn+1 = (l; k)jXn = (i; j)) = 0 if l 6= j
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and P (Xn+1 = (j; k)jXn = (i; j)) = Z 10 eTj exp(D0t)D1ek dt
as well asP (Yn 2 dtjXn = (i; j)) = eTi exp(D0t)D1ej
Clearly, this representation is rather theoretical, as theresulting parametriza-
tion of the MAP could hardly be called a natural one.

Suppose a time seriesy is observed as a sample of the marginal chainY
of a hidden Markov modelZ. The marginal chainX of Z is not observable.
Theny is called an incomplete data sample ofZ. A complete data sample
would be a set(x1; y1); : : : ; (xN ; yN ) with xn andyn denoting the state of
the regime and the observed value of the marginal chainY at time indexn, respectively. Lety = (y1; : : : ; yN ) denote an incomplete data sample of
sizeN to be fitted to a hidden Markov model. The statistical problemlies in
finding the true parameters out of the parameter spaceM1 ��m for Z.

A likelihood oriented approach may be gained from an adaptation of the
procedure derived in section 3. First, the datay1; : : : ; yN are seen as a sam-
ple from a finite mixture distribution. They are used to gain information on
the mixing distribution and the parameters of the componentdistributions in
the mixture. Second, discriminant analysis yields an estimate of the current
mixture (or the current state of the regime) at any time index1; : : : ; N � 1.
Third, using these estimates the transition matrix of the underlying Markov
chain is estimated by an adaptation of the classical empirical estimator by
Anderson, Goodman (1957). These steps are explicated in therest of this
section. All are similar in reasoning and methods to the respective steps in
section 3. Therefore, their descriptions are kept short.

5.1. THE SAMPLE AS A FINITE MIXTURE

Not knowing the regimeX, the data sample must be seen as a sample of some
finite mixture distribution with density functionf(x) = mXi=1 �if(x; �i)
for all x in the sample spaceX . In this first step we assume that there is no
correlation betweeny1; : : : ; yN . Then we can estimate the mixing distribution� as well as the parameters�i of the component distributions via an appro-
priate specification of the EM algorithm (see McLachlan, Peel (2000), ch.2).
Denote the derived estimates by�̂ = (�̂1; : : : ; �̂m) and�̂i.

bmapem-form.tex; 28/11/2001; 11:42; p.15



16 L. Breuer

5.2. ESTIMATING THE REGIME SAMPLE

In order to discover the underlying correlation betweeny1; : : : ; yN , we need
to estimate the state of the regime at every time index1; : : : ; N . This can
be done by discriminant analysis (cf. Titterington et al. (1985), pp.168f),
yielding �̂n(i) = �̂if(yn; �̂i)Pmi=1 �̂if(yn; �̂i)
for all n = 1; : : : ; N and i = 1; : : : ;m. Here, �̂n(i) denotes the condi-
tional expectation that the regime was in statei at time indexn, given the
observationyn and the estimateŝ� and�̂i from section 5.1.

5.3. ESTIMATING THE REGIME TRANSITION MATRIX

A standard estimator for Markov chains without any additional structure is
given in Anderson, Goodman (1957). Analogous to step 3 in theprocedure of
section 3, the regime states cannot be observed directly butmust be estimated
by the vectorŝ�n computed in the preceding section 5.2. Plugging these into
the classical formulas yieldsN̂ij = N�1Xn=1 �̂n(i)�̂n+1(j) and N̂i = N�1Xn=1 �̂n(i) = mXj=1 N̂ij
for i; j = 1; : : : ;m. Now the empirical estimators under the condition of the
estimates from section 5.2 are given asp̂ij = N̂ijN̂i
for all i; j = 1; : : : ;m. This completes the estimation procedure.
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