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Abstract. Although the concept of Batch Markovian Arrival Procesd#8IAPS) has gained
widespread use in stochastic modelling of communicatistesys and other application areas,
there are few statistical methods of parameter estimatiopgsed yet. However, in order to
practically use BMAPs for modelling, statistical modelifig from empirical time series is
an essential task. The present paper contains a specffia#tihe classical EM algorithm
for MAPs and BMAPs as well as a performance comparison to ¢hepatationally simpler
estimation procedure recently proposed by Breuer and ilBarthermore, it is shown how
to adapt the latter to become an estimator for hidden Markogets.
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1. Introduction

Markovian Arrival Processes (MAPs) and Batch MarkovianveairProcesses
(BMAPSs) have been introduced by Neuts (1979) and Lucantt®®l) in
order to provide input streams for queueing systems whiehMarkovian
(and hence analytically more tractable) on the one hand &yt versatile
(even dense in the class of point processes, see Asmuss&oaled1993))
on the other hand. This concept has proved very successfukineing theory
for more than twenty years now. For a bibliography demotistyathis, see
Lucantoni (1993).

Although the concept of BMAPs has gained widespread useahastic
modelling of communication systems and other applicatimas, there are
few statistical methods of parameter estimation propossd A survey of
estimation methods is given in Asmussen (1997). His empliagin max-
imum likelihood estimation and its implementation via th®l Blgorithm.
For the Markov Modulated Poisson Process (MMPP), an EM #dlgurhas
been developed by Ryden (1993; 1994; 1996; 1997), whereamigsen et
al. (1996) derived a fitting procedure for phase-type distions via the EM
algorithm. The single existing likelihood—oriented prdaee that has been
introduced for BMAPSs up to now can be found in Breuer and Gil(2000)
or Breuer (2000b) (see Breuer (2000a) for a special case).

However, in order to practically use BMAPs for modellingatitical
model fitting from empirical time series is an essential taBfke present
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2 L. Breuer

paper contains a specification of the classical EM algori(ee®e Dempster
et al. (1977)) for MAPs and BMAPs as well as a performance @iapn
to the computationally simpler estimation procedure pseploin Breuer and
Gilbert (2000). In section 2, the EM algorithm will be spesififor MAPs and
BMAPSs. Section 3 contains a short description of the estongbrocedure
for BMAPs introduced in Breuer and Gilbert (2000). In seatdonumerical
results of the two procedures are compared. Finally, se&iprovides an
adaptation of the procedure given in section 3 to the clagédoien Markov
models. In order to understand the details of the estimationedures to be
introduced in the present paper, it is strongly recommerideoe familiar
with former EM specifications for PH distributions (see Assen (1996))
and for the MMPP (see Ryden (1996)), which is a special catieed1AP.
Assume that the empirical information observed from anfigfneam into
a queueing system consists of the time instéfis. . . , Tv) of single arrivals
(for MAPS) or the time instantéT, ..., T) of arrivals together with their
batch sizegb;, ..., by), with N denoting the number of observed arrivals.
The task is to find parametel3, and D, for a MAP (or Dy, D+,..., D)y,
with maximal batch sizé/, for a BMAP) that optimally fit this arrival stream.
In both estimation procedures that will be introduced, weHlix number
of phases for the BMAP model to be a known integer> 2. Procedures
for estimating the numbem of phases are discussed in Ryden (1997). A
feasible method without a prior estimationrafis proposed in Jewell (1982)
as follows. Denote the estimators (as given by the EM algariaind the
simpler procedure described below) for an assumed numfeof phases
by (Do(k), D1(k),..., Dy (k)). Estimating the parameters by the methods
given below for increasingr;, and stopping as soon as the likelihood ratio

f(z|Do(k + 1), A(k +1),.. .:DM(k +1))

+ D1
f(21Do(k), Dy(K), ..., Dar(k))

is smaller than a threshold value+ ¢ leads to a reasonable model fitting.
Since the adaptation of the model increases with the assummexber of
phases, the likelihood gain is always positive. The thrieskralue reflects
the limit of accuracy beyond which the gain in model adaptais not worth
the additional computation time.

This method has been applied to BMAP estimation via the phaeede-
scribed in section 3 by Breuer and Gilbert (2000). Many nucaéresults can
be found in Gilbert (2000). In particular, it can be seendhbiat the number
of phases of the estimated BMAP representation does nolysla@ncide
with the number of phases of the input BMAP. Neverthelesshése cases
the likelihood of the arrival stream under the estimatedasgntation is about
the same as the likelihood under the original input BMAP.
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2. An EM algorithm for MAPsand BMAPs

The typical property of observing time series derived froflAP (resp. a
BMAP) is that only the time instants of arrivals (and theitdbesizes, resp.)
but not the phases can be seen. If the phases were obsethablene could
apply classical estimators for finite state Markov procegsee Albert (1962)
or Basawa, Rao (1980)) and the problem would be solved. Trufave
a problem of estimation from incomplete data. For this typestatistical
problems, the so—called EM algorithm has proven to be a gahsof ap-
proximating the maximum likelihood estimator (see Dempsteal. (1977),
McLachlan, Krishnan (1997) or Meng, Dyk (1997)). The name &dbrithm
stems from the alternating application of an expectatiep ¢for E) and a
maximization step (for M) which yield successively highigelihoods of the
estimated parameters.

In this section we first describe the classical estimatorelwvivere ap-
plicable if we had the complete sample for a MAP (i.e. if plsagere ob-
servable). Then we derive the specification of the EM alborifor MAPs,
assuming that phases are not observable (incomplete sarkially, this
specification is extended to obtain an EM specification for/Ad.

2.1. COMPLETE SAMPLE CASE FORMAPS
A sufficient statistic for the complete data sample wouldHzedollection
S=JF0<n<M,1<E<N),(8*:0<n<M,-1,1<k<N)

of random variables, wherg* denotes the phase immediately after b
jump of the phase process in th¢h interval between arrivals (i.e. in the
interval [T _1, Tx[), M}, the number of jumps in this interval (not including
the last jump accompanied by an arrival), affithe sojourn time after the
nth jump of the phase process in the interff@] 1, Tj|.

Then the density of a complete samplender parameter®, = (Dy.;;)
andD; = (Dy,;) would be given by

m m m N m m Lo
f(z|Do. Dy) = [[exp (Do:iZ) [I I DPoui 11 11 Pi

i=1 i=1j=1,j#i i=1j=1

where Z; denotes the total time spent in phaseV;; the number of jumps
from phase: to phasej without accompanying arrival, ant;; the number
of jumps from phaseé to phasej with accompanying arrival. These variables
can be computed from the sufficient statistic by

N M—1 N M1
Zi=3 3 Yug=nSt  Ny=> D lus=nlys,, -
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and

for 1 < i # j < m. Further define

—1 Mj—1

Z > lir=iSn
k=1 n=0

forl <i:<m.

Acknowledging the relatioDy.;; = — (Z;-”Zl Dy + Z;-":L#i Do;z'j),
the maximum likelihood estimato®, and D, for the matricesD, and D,
would be

~ . N L

DO,Z] - sza Dl ij — lea (1)

DO T — (Z Dl 12 + Z DO zy) (2)
J=Lj#i

for1 <i,5 < m, as given in Albert (1962).

2.2. EMFORMAPs

In the case of observing only an incomplete samplehe EM algorithm
provides an iteration of alternating expectation (E) andkimiation (M)
steps that lead to a reevaluation of the estimators ingrgdbkeir likelihoods
in every cycle of E- and M—step. In our case, the incompletepday consists
only of the sequencély, = 0,Ty,...,Ty) of inter—arrival times that are
observable. Keeping in min, = 0, we will not lose information by setting
z=(z1,...,2n) = (T, Ty = T1,...,Tn — Tn—1).

Given the parametel®, andD; as well as an initial phase distributian
the likelihood of the incomplete sampids

N-1
f(z|m, Dy, Dy) = (H exp Dozn)D1> exp(Dozn)n 3

n=1

with n := Dy 1,,, denoting byl,,, the m—dimensional column vector with all
entries being 1.
Assume that the estimates after thiln EM iteration are given by the

matrices(D{"), D{¥)). Then in the first step of thé + 1st cycle, the con-
ditional expectations of the variablé$, N;; and L;; given the incomplete

observationy and the current estimat(aﬁ)ék>, f)g’“) are computed.
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In order to simplify notations, define
vG@) =3 D65 and g1 (i) = DI exp(DS z)m (@)
7j=1

for2<n<Nandi=1,...,m

Since the empirical time series is observed in a statioreginte, we can
set the phase distributiomo at timeT, = 0 to be the phase equilibrium,
i.e. satisfyingmo (D, D 4 D( )) = 0. Thusmg is a deterministic function of
(D, D™y and in particularf(z|7r0,f)(()k),f)@) F(zIDP, D) holds.
Next we define iteratively

N

Tptl 1= Ty exp(ﬁ(gk)zn+1) ng) (5)

for0 <n < N — 2, interpreting ther,, as row vectors.
We can continue the E—step with

N

(k+1) ,_ 1) —
Z; = E(f)(()k)’f)gk)>(zz|2) = T; E(ﬁék)’ﬁgk))(zin‘Z)

and

N—
Y = B g poo, (Yil2) 2 0 oy (ZE12)

where Z]' denotes the random variable of the total amount of time withi
[T,,-1, T, that is spent in phase This is given by

B (z0]z) - liilz: D8 DY)
(k) = X -
(Do 7D ) f(Z‘D(()k), ng))

(6)

forall1 <[ < N, with ¢, given as in definition (7) below. The derivation
of (6) is completely analogous to the one in Asmussen et 8Bq), p.439.
Likewise, the E-step for

N
(k+1) B _
Ny = E(f)(()k)’f)gk)>(NZ]‘Z) = ngl E(bék),ﬁik))(NZ;'|Z)

with

n _
E pw pioy(Nijl2) =
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for 1 < n < N is derived using completely the same arguments as in
Asmussen et al. (1996), p.440. Here, the matrix functignare defined as

cn(i, jlz, DY), D) = /0 " tn_1exp (D u)e;-

el exp (D§7 (2 — ) du (7)

for1 <n < Nandl <i,j7 <m.
The E-step is completed by

N—-1
(k+1)  _ ) —
L;; = E(f)(()k)’ﬁik)>(LZ]‘Z) = ngl E(f)(()k)’bik)>(L%‘Z)

with
E po pwoy(Lil2) = P(JRy, =i, T = il o)
= %f(JMn iy 21, ) PIDT = GLIE =)
.f(zn+1,...,zN|J61+1 =j)
_ (W”*IQXP(D(()k)Zn ) ( p(D§ 2041 77n+1)]
) f(z If?é ,D§ )

forl <n<N-1.

The second step of the+ 1st cycle consists of the computation of max-
imum likelihood estimates given the new (conditional bunpdete) statistic
computed in the E—step. This can be done by simply replabmgdriables in
equations (1) and (2) by the conditional expectations cdatpabove. This
leads to reevaluated estimates

(k+1) (k+1)
U _ Ni; Pl _ L
0 Z(k+1) ’ 13ig Y(k+1)

2 7

and

Ay(k+1) ¢ k+1 — k+1
Dyt =~ | XD Z
7=1 j=
forl <i,57 <m.
(k+1) A (k+1)
Using these, one can compute the likelihgt@| D", D;" ") of the

empirical time series under the new estimates accordln@maté)n (3). If
the likelihood ratio

Fz DY D)
(
1
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EM for BMAPs 7

remains smaller than a threshdld- ¢, then the EM iteration process can be
stopped, and the latest estimates may be adopted. Thedltesiue reflects
the limit of accuracy beyond which the gain in model adapteis considered
not to be worth the additional computation time.

2.3. EMFORBMAPSs

Once we have obtained the above EM specification for MAPsx&msion
to BMAPs is straightforward. In the BMAP case we not only knibv times
(Ty,...,Tw) of arrivals but also the arrival sizés,, ..., by), meaning that
at time instantl,, there was a batch arrival of si2g, withn = 1,..., N,
b, € IN. In order to obtain reasonable estimates, we need an uppedé
such thatD,, = 0 for all n > M. Furthermore, we need enough arrivals to
ensure that there are reasonably many arrival events of eizr in the time
series.

Starting from thetth estimatesD{"), D). D)) for (Dy, ..., D),
thek 4+ 1st EM iteration proceeds completely analogous as for MARt w
obvious adaptations in equations (3), (4) and (5). The ordyensubstantial

difference is that for BMAPs we need to complﬂféfijl), . ,LS\'};JU instead
of only LZ(.;““). These are given similarly by

(k+1) R

Ls;ij = E(ﬁék),f)ik))(LS;ij‘z) = Z E(D(()k)’ﬁgk))(lzg;ij‘z)
n=1,bp,=s
fors=1,..., M, with
Bipo pwy(Leglz) =
(7Tn—1 exp(D} >zn))iDg (i, 5) (GXP(Dé >zn+1)77n+1)j
- ~k) Ak ~ (k
FD, D, DY)

forl <n<N-1.
These expectations lead to new estimates

L(k+1)
f)(k-l—l) _ siig
CHY Y(k+1)

i

fors=1,..., M.
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8 L. Breuer

3. A simpler estimation procedure

In Breuer, Gilbert (2000), a computationally much lightstimation proce-
dure has been introduced. It works in three steps, each ahwdsies classical
statistical methods. In the first step (section 3.1), theigogb interarrival
times are used to estimate the matflx, neglecting the correlations between
consecutive interarrival times. Then those can be integgras a sample of
phase-type distributions and hence the entrieBptan be estimated by an
EM-algorithm for phase—type distributions (see Asmusseal. €1996)). In
the second step (section 3.2), for every empirical arrimatant the proba-
bility distribution of being in a certain phase immediatblgfore resp. after
this instant is estimated using discriminant analysis {(E&erington et al.
(1985)). In the last step (section 3.3), the derived estinsabf the first two
steps are used in order to calculate the empirical estinfatdhe matrices
D,,n > 1. This is done according to standard estimators for Markainsh
(see Anderson, Goodman (1957)).

3.1. ESTIMATING THE MATRIX D

Asin section 2, letz, := T, —T,—1 :n € {1,..., N}) denote the empirical
interarrival times. Denote the number of phasesrhyAccording to Baum
(1996), p.42, the interarrival times of a BMAP are distrémitphase—type
with generatorD,. Hence the(z, : n € {1,...,N}) are a sample of a
phase—type distribution with density

2(t) = mePoly

fort € IR, . Here,m = (m,...,my) is the steady—state distribution of the
phase process at arrival instants gne= —Dg1,, is the so—called exit vector
of the phase—type distribution with representatienD,)).

If m is known, there is a maximum likelihood estimator foandD,. The
solution of the estimating equations can be approximagzdtitely by an EM
algorithm (cf. Dempster et al. (1977) or McLachlan, Krishr{a997)), which
was derived for this special case by Asmussen et al. (1996peoteeds as
follows.

Starting from an intuitive first estimaticix (), D) of the representation
of the phase—type distribution, the recursions

7r(k+1) — i i Wz(k)bz(‘m(zn)
é N~ 7E)p(k) (2,)

iy = 5 Pl [ e
05ij — 7®b*) (2,) P 7(k)bpk) (2,)
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fori # 5 and

k N

tinte) |

k—l—l

||
||M2
O“ Q
R‘

along with the relation

DU D) _ i 1)

0342 - i

and the definitions

B () = / k) D uy, TP Gy (8) gy
0

fori,j € {1,...,m} undk € IN lead to monotonically increasing likeli-
hoods.
In Asmussen et al. (1996), it is proposed to compute the salfie) (z, ),

b (z,) andcl(;-C> (z,) numerically as the solution to a linear system of homo-
geneous differential equations.

3.2. PHASES ATARRIVAL INSTANTS

Using the estimatof#, D) from the last section, the distribution of the non—
observable phases attim@s, : n € IN) can be estimated using discriminant
analysis in a standard way (cf. Titterington et al. (198%),168f).

For a given empirical arrival instartt,, let Z,, := T,, — T,,_1 andR,,_4
denote the random variables of the last interarrival timgé ahthe phase
immediately after the last arrival instdfit_ 1, respectively. LeP(Z,,, R, _1)
denote their common distribution adt| Z,, | R,,—1), P(R,—1|Z,) the condi-
tional distributions.

Since(Z, : n € {1,...,N}) is given empirically by the time seri¢g’, :

n € {0,...,N}), it suffices to estimate the distributid®(R,,_1|Z,, = zn)
for everyn € {1,..., N}. This distribution is discrete, because by assump-
tion there are only finitely many phases.

Bayes’ formula yields foy € {1,...,m} andn € {1,...,N}

P(Zn = Zn|Rn71 = j) ’ P(Rnfl = .7)
M P(Z, =2zy|Ry 1 =1i)- P(Ry 1 =1)
The expression®(Z,|R,,—1) exist as conditional densities (with respect to

the Lebesgue measure @), since the interarrival time&,, are distributed
phase-type.

P(Rn—l =j‘Zn = zn) =
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10 L. Breuer

The expressions on the right hand can be estimated via tinea¢stl pa-
rameterg7, 150) and the resulting vectoj. Hence, for every arrival instant
T,_1 the estimator for the conditional distribution of the phat&,, _; given
the interarrival timeZ,, = T,, — T,,_1 is given by

R T[A)OznA,A. .. TﬁoznA
PRy =ilZy =) = —at 1T TG 0

n—1 n n m T f)oz ~ A N ﬁoz ~
j—1 €5 €70 - T welozng)

foreveryi € {1,...,m}andn € {1,...,N}.

Furthermore, it will be necessary to estimate the phase uiratedy before
an arrival instant. This can be done by the same method. Bém®atespective
conditional distribution byP(R,,_|Z,). Then we get the estimation

~ ljozn - ol bOZn ..M.

5 . e €; " i e €; 1
P(Rn— = ilZy = z,) = m ~ D2 T o ha
S weDone; iy | weDoing

foreveryi € {1,...,m}andn € {1,...,N}.
3.3. ESTIMATING THE MATRICES D,, FORn > 1

The matrice§D,, : n € INy), which are the blocks of the generator matrix
@ of a BMAP of orderm, have dimensioitm x m) and the form

Dn(Za]) = _DO(ivi) pz(naj)

foreveryi,j € {1,...,m}.

In order to complete the estimation of the generator maitr/ffices to
estimate the paramete(s;(n,j) : n € IN,i,5 € {1,...,m}), which are
the transition probabilities of the embedded Markov chaiargval instants.
Without any further assumptions regarding these, use oéthgirical esti-
mator is standard. This is given in Anderson, Goodman (195irice in the
present statistical model the phase process is hiddenh#sehange at each
arrival instant cannot be observed but must be estimatadhiso the results
of the last section are used.

Foreveryk € {0,..., N—1}, let R, andR;_ denote the random variable
of the (non-observable) phase at the empirical arrivabimst;, and immedi-
ately before it, respectively. In the last section, estor&for the conditional
distributions of theR, and R, were given. Letd denote the Kronecker
function and remember tha{ denotes the size of thigh batch arrival. Define

N-1

ni(n,j) == Y P(Ry— =i|Zx = 2) - Oy - P(Ri = 5| Zps1 = 2z41)
k=1
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and
N-1 >
mii= 3 PR =ilZk=2) = 33 mi(n, )
Pt n=1j=1

forn € IN andi,j € {1,...,m}. In a BMAP, the random variableB;,_

and R, are dependent in any non-trivial case. Since in the presedein

the phases are non—observable, this dependency can onbfleeted by

conditioning on the consecutive empirical interarrivaléisz;, andz, 1.
Because of

P(Ry— =i,by =n,Ry =j) P(Ry_ =1,bp > 1)

i) = R =i 2 ) P =)
forallk € {1,..., N — 1}, the empirical estimator fgs;(n, j) is given by
A . ’I’Ll(n,j) ﬁl
iUz = : =
pi(n, ) n “bon

for everyn € IN andi,j € {1,....m}.

4. Numerical results and comparison of the two procedures

The following computations were done on a 500 MHz processorguthe
programming language Octave (a free MatLab version) undend. Tables
1 through 3 are results from time series of 100 arrivals, evables 4 through
6 give estimates from 500 arrivals. The numerical examplewnly com-
puted for MAPs, since the estimator for BMAPs is essentitiily same but
BMAPs would require much larger time series and thus longetimes. The
run times for the EM algorithm are further the main reasonadftesting time
series with more arrivals.

At first glance it can be observed that higher likelihoods dorecessarily
mean that the estimated parameters are closer to the dnmiremeters. As
a maximum likelihood estimator, the EM algorithm simplhegito find any
set of parameters which yields the highest likelihood of abserved time
series. The numerical results show that the simpler estinaghieves almost
the same likelihood as the EM algorithm while performing mf&ster and
requiring less storage. Since phase-type distributiond {laus BMAPS) in
general have no unigue representation (see e.g. Botta(@o8lr)), it is not
reasonable to search for such one. The aim of model fittingriplg to find
parameters for a BMAP that make the observed time serieg tinel @ MAP
model at least as likely as under the original parameterallinumerical
examples with time series derived from MAPSs, this happendakttthe case
for both procedures.
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Since MAPs are extensively used as models for arrival stseéanueueing
systems, a more reasonable measure for the goodness-ffit tested esti-
mation procedures might be a collection of performance oreador queues
with the respective inputs. One such performance measure iso—called
caudal characteristig (see (Neuts, 1986) or (Latouche and Ramaswami,
1999)). The value of) is a good description of the tail behaviour of the
stationary distribution of the queue process.

In the following numerical examples, for every arrival pess (as well as
for the estimators) the caudal characteristiof the respectivel/ AP/M /1
gueue has been computed. This has been computed as th¢ ¢dggesalue
of the rate matrixR of the QBD Markov chain embedded at jump times of
the queue (including phase changes). The rate of the expahsgrvice time
distribution has been set to equal the highest arrival riate the absolute
value of the lowest entry of the input MAPI3;). The numerical results show
that the caudal characteristics computed from the two estira are very
close and (except in tables 1 and 4) approximate the caudehcteristic of
the input MAP well enough.

The EM algorithm yields consistently higher likelihoodsiththe simpler
procedure. Yet, comparing the gain in likelihood per atriad the total
run time, the question remains whether an EM procedure ihwibe effort.
Although the likelihoods of the estimated parameters atisfgimg for both
procedures, none of them can approach the original paresriateerms of a
maximal distance norm. This can be seen best from the estilwaiues for
D;. However, in terms of the caudal characteristic for the eepe queues
with exponential service time distribution, the goodnessit is much better.
The EM algorithm uses all the available information in adirétions. Any
improvement of the procedure introduced in section 3 witfqren at most
as good as the EM algorithm.

Table 1 Input MAP | Estimation by EM| Simple estimation

Dy = -10.0 5.0/ -10.5 54| -15.3 10.1
50.0 -100.0| 30.4 -78.2| 59.4 -104.2

D, = 4.0 1.0 2.8 22| 2.6 2.7
10.0 40.0| 26.7 21.1| 22.1 22.7

run time: 6m 27s 1m4s

likelihood: 3.58 E58 1.62 E59 9.86 E58

i 0.2445 0.1777 0.1752
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Table 2 Input MAP | Estimation by EM| Simple estimation
Dy = -5.0 2.0| -35 14| -5.0 2.5
5.0 -10.0f 8.0 -21.4) 5.1 -10.3
D, = 2.0 1.0| 1.8 04| 1.7 0.9
3.0 2.0| 10.1 3.3] 34 1.8
run time: 1m 9s 8s
likelihood: | 9.08 EO5 5.74 EO6 1.51 EO6
n 0.3611 0.3583 0.3432
Tab 3 Input MAP Estimation by EM | Simple estimation
Dyg=| -5.0 1.0 1.0 -7.8 2.7 2.6| -11.9 4.0 4.0
20 -10.0 1.0 46 -14.7 43 6.2 -18.0 6.0
10.0 20 -20.0 6.7 6.3 -23.7| 8.7 8.4 -255
D=1 20 1.0 0.0 0.9 0.8 0.8 1.7 1.2 0.9
2.0 4.0 1.0 2.0 1.8 20| 26 1.8 1.4
1.0 5.0 2.0/ 3.6 3.3 3.7, 3.8 2.6 2.0
time: 27m 56s 14s
likel.: 1.51 E26 3.43 E26 1.28 E26
n 0.2627 0.2744 0.2684
Table 4 Input MAP | Estimation by EM| Simple estimation
Dy = -10.0 5.0 -95 49| -11.2 7.0
50.0 -100.0| 55.9 -119.9| 67.2 -123.6
D, = 4.0 1.0 33 13| 22 2.1
10.0 40.0| 28.3 35.6| 28.4 28.0
run time: 27m 12s 4m 14s
likelihood: 1.10 E269 1.17 E270 2.85 E269
n 0.2445 0.2096 0.1816
Table 5 Input MAP | Estimation by EM| Simple estimation
Dy = -5.0 20| -54 2.6| -5.6 2.7
5.0 -10.0| 4.8 -10.2| 5.0 -10.4
D, = 2.0 1.0| 1.8 09| 1.9 1.0
3.0 20| 35 1.8| 35 1.8
run time: 11m 43s 26s
likelihood: | 3.59 E59 3.98 E59 3.91 E59
n 0.3611 0.3456 0.3639
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Tab 6 Input MAP Estimation by EM | Simple estimation
Dy =1 -5.0 1.0 1.0| -5.7 1.8 19| -7.0 2.4 2.4
2.0 -10.0 1.0, 48 -17.8 51 7.0 -21.2 6.1
10.0 2.0 -20.0 6.9 6.8 -24.6| 10.3 8.7 -30.7
D,=| 20 1.0 0.0, 0.7 0.8 0.6/ 0.9 0.8 0.6
2.0 4.0 1.0 2.8 3.0 22| 3.2 2.9 2.1
1.0 5.0 2.0, 4.0 4.1 29| 46 4.2 3.0
time: 51m 42s 2m 36s
likel.: 8.53 E117 4.90 E118 1.35E118
n 0.2627 0.2869 0.2845

5. Estimating hidden Markov models

There is a close relationship between MAPs and a very gewtass of
Markov chains called hidden Markov models (see e.g. Eléo@l. (1995)).
On the one hand, using the construction in Cinlar (1969)34f,3one can
represent BMAPSs as special hidden Markov models. On the bted, the
estimation procedure described in section 3 can be adaptgdrteral hid-
den Markov models in a straightforward manner. This shakHhm@vn in the
present section.

A hidden Markov model is a two—dimensional Markov chain= (X,Y)
= ((Xp,Yn) : n € IN) with the following properties:

1. P(Xp41|X1,. .., Xn) = P(Xp41]|Xy), i.e. the marginal chaiX is a
Markov chain with finite state spadd,...,m}. It is called the underlying
Markov chain or the regime of. Let P* = (p{;)1<i j<m denote the true
transition matrix of the underlying Markov chai. The space of all Markov
transition matrices of dimensian shall be denoted by1;.

2.P(Y,|X1,Y1,..., X1, Y01, Xy) = P(Y,|Xy), i.e. given the regime
X, the distributions ol,,, n € IN, are independent. Assume that the distri-
butionsP(Y,|X,, = i),7 = 1,...,m are all dominated by some measure
and denote thg—density ofP(Y,,| X,, = i) by f(.;0;), with 6y, ....,0,, € O,
calling ©™ the parameter space for the marginal cHiain

According to the construction in Cinlar (1969), p.384f, gien this defi-
nition of a hidden Markov model, the sample of a MAP would heresented
by the observable inter—arrival times, ...,yy and the hidden variables
X41,..., Xy with X,, denoting the phases immediately after the adjacent
arrival instants. Thu¥,, = (¢, 7) means that immediately after arrival instant
T,.—1, the phase process was in stgtand immediately after arrival instant
T,, the phase process was in statdhen we have

P(Xpt1 = (lak)‘Xn = (i,7)) =0 it 1#7
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and
P = (G.0)|Xn = .) = [ e exp(Dat) Die. d
as well as

P(Y, € dt|X,, = (i,7)) = el exp(Dot)D1e;

Clearly, this representation is rather theoretical, ageBalting parametriza-
tion of the MAP could hardly be called a natural one.

Suppose a time serigsis observed as a sample of the marginal chain
of a hidden Markov modek. The marginal chairX of Z is not observable.
Theny is called an incomplete data sample of A complete data sample
would be a setzy,y1),. .., (xnN,yn) With z,, andy, denoting the state of
the regime and the observed value of the marginal chaiat time index
n, respectively. Leyy = (y1,...,yn) denote an incomplete data sample of
size N to be fitted to a hidden Markov model. The statistical problE® in
finding the true parameters out of the parameter spdgex 0™ for 7.

A likelihood oriented approach may be gained from an aduptatf the
procedure derived in section 3. First, the data. . ., yy are seen as a sam-
ple from a finite mixture distribution. They are used to gaiformation on
the mixing distribution and the parameters of the compod@attibutions in
the mixture. Second, discriminant analysis yields an edtnof the current
mixture (or the current state of the regime) at any time index., N — 1.
Third, using these estimates the transition matrix of theeuying Markov
chain is estimated by an adaptation of the classical enapigstimator by
Anderson, Goodman (1957). These steps are explicated iregtteof this
section. All are similar in reasoning and methods to theaetipe steps in
section 3. Therefore, their descriptions are kept short.

5.1. THE SAMPLE AS A FINITE MIXTURE

Not knowing the regiméX, the data sample must be seen as a sample of some
finite mixture distribution with density function

m

flx) = mif(2;6;)

=1

for all = in the sample spac&. In this first step we assume that there is no
correlation between, . .., yny. Then we can estimate the mixing distribution
m as well as the parametefis of the component distributions via an appro-
priate specification of the EM algorithm (see McLachlan,|R2@00), ch.2).
Denote the derived estimates by= (71, ..., 7, ) and;.
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5.2. BESTIMATING THE REGIME SAMPLE

In order to discover the underlying correlation betwgen . ., yy, we need
to estimate the state of the regime at every time intlex., N. This can
be done by discriminant analysis (cf. Titterington et aPg8), pp.168f),
yielding
__ ®if(yn30i)

izt 7if (Yn; 0i)
foralln = 1,...,N andi = 1,...,m. Here,7,(i) denotes the condi-
tional expectation that the regime was in stag time indexn, given the
observationy,, and the estimates and6; from section 5.1.

7 (i)

5.3. ESTIMATING THE REGIME TRANSITION MATRIX

A standard estimator for Markov chains without any addaiostructure is
given in Anderson, Goodman (1957). Analogous to step 3 iptheedure of
section 3, the regime states cannot be observed directinbsitbe estimated

by the vectorst,, computed in the preceding section 5.2. Plugging these into
the classical formulas yields

. N-1 R N-1 mo
Nij= > Fn(i)tny1(j) and  Ny= Y @,(i) =Y Ny
n=1 n=1 j=1
fori,j = 1,...,m. Now the empirical estimators under the condition of the
estimates from section 5.2 are given as

g = 20
1] NZ
foralli,7 = 1,...,m. This completes the estimation procedure.
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