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1.1 Introduction

The question, “Is the long term qualitative behaviour of numerical so-
lutions accurate?” is increasingly being asked. One way of gauging this
is to examine the success or otherwise of the numerical code to main-
tain certain conserved quantities such as energy or potential vorticity.
For example, numerical solutions of a conservative system are usually
presented together with plots of energy dissipation. But what if the con-
served quantity is a less well studied quantity than energy or is not easily
measured in the approximate function space? What if there is more than
one conserved quantity? Is it possible to construct an integrator that
maintains, a priori, several laws at once?

Arguably, the most physically important conserved quantities arise via
Noether’s theorem; the system has an underlying variational principle
and a Lie group symmetry leaves the Lagrangian invariant. A Lie group
is a group whose elements depend in a smooth way on real or complex pa-
rameters. Energy, momentum and potential vorticity, used to track the
development of certain weather fronts, are conserved quantities arising
from translation in time and space, and fluid particle relabelling respec-
tively. The Lie groups for all three examples act on the base space which
is discretised. It is not obvious how to build their automatic conserva-
tion into a discretisation, and expressions for the conserved quantities
must be known exactly in order to track them.

The study of Lie group symmetries of differential equations is one of
the success stories of symbolic computation, (Hereman (1997)). Not only
symmetries but integration techniques based on them are now commer-
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cially available, (Cheb-Terrab, Duarte and da Mota, (1998)). Moreover,
these can usually be obtained without understanding the underlying the-
ory: no human interaction with the software is required. This success is
built on the fact that explicit, exact, analytic formulae are known for all
the requisite quantities (see for example Olver, (1993)), and the algo-
rithms which are required for the intermediate processing are well under-
stood (Hubert (2000), Hubert (2003), Mansfield and Clarkson (1997),
Reid (1991), Reid, Wittkopf and Boulton, (1996)) .

One possibility is to use symbolic methods to study symmetries and
conservation laws of discrete systems. One might then calculate intrin-
sically conserved quantities of existing schemes, but so far this line of
research has been less successful for a variety of reasons. The philosoph-
ical points of view that are possible for such a theory are still debated,
and the computations involved are less tractable than those for smooth
systems (Hydon (2000), Levi, Tremblay and Winternitz, (2005), Quispel,
Capel and Sahadevan, (1992)).

The key objective of the present article is to examine the idea of
making a conservation law an intrinsic property of a scheme by building
in a symmetry and a discrete variational principle. There are several
challenges to this approach. The first is to show how a group action
that takes place in a base space that gets discretised is nevertheless still
present in some sense. The second is to present a mathematical structure
that allows a discrete conservation law to be proven rigorously from the
existence of the symmetry.

At the simplest level, the proof of Noether’s theorem for smooth sys-
tems involves symbolic manipulation of the formulae involved. It is
necessary to dig a little deeper to see what might transfer to a discrete
setting. The algebraic foundation and the mathematical structures us-
ing which Noether’s theorem can be proved and elucidated involve the
construction of a variational complex (see Olver, (1993) and references
therein). A complex is an eract sequence of maps, that is, the kernel
of one map equals the image of the previous map in the sequence. The
familiar grad — curl — div sequence is locally exact, that is, is exact pro-
vided the domain of the functions involved is diffeomorphic to a disc.
The variational complex involves the extended sequence of operators,
grad — curl — div — Euler-Lagrange — Helmholtz. This extension makes
sense if the coefficient functions involve arbitrary dependent variables
and their derivatives, as indeed a Lagrangian does. Exactness means,
for example, an expression is a divergence if and only if it maps to zero
under the Euler-Lagrange operator.
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Variational methods for difference systems have been available in the
literature for some time (Kupershmidt (1985)). The complete set of
proofs showing the difference variational complex is exact were given
more recently (Hydon and Mansfield (2004)). There is no tangent struc-
ture on a discrete lattice, and so no “top down” construction for the
variational complex for difference systems can exist. Yet the formulae
involved in the difference version of Noether’s theorem are amazingly
similar, to the point where a “syntax translation” tells you how to con-
vert one to its counterpart. An independent view and derivation of
Noether’s theorem for difference systems has been given by Dorodnitsyn
(2001).

In the third part of this paper, we discuss how the algebraic argu-
ments transfer to moment-based approximations on an arbitrary trian-
gulation. Classical constructions from algebraic topology, such as sim-
plicial spaces, chains and cochains, boundary and coboundary opera-
tors, are needed for this. These ideas are of increasing interest to both
physicists and numerical analysts (Chard and Shapiro (2000), Hiptmair
(2002), Mattiussi (1997), Schwalm, Moritz, Giona and Schwalm (1999),
Tonti (1975)). The interplay of such notions with physical quantities and
systems is being explored as a way to ensure that the correct geometry
of a problem is encoded in the discretisation.

Our arguments require that the set of moments used fits into an ex-
act scheme as described by Arnold (2002). This means that the vari-
ous projections to finite dimensional function spaces need to maintain
the exactness of the grad — curl — div sequence. Exactness guarantees
the conditions for numerical stability given by Brezzi’s theorem (Brezzi
(1974)), so these ideas have innate meaning for the finite element method
quite apart from those presented here. The variational complex for such
schemes is detailed in Mansfield and Quispel (2005). Here, we develop
those ideas further to investigate Noether’s Theorem for finite element
approximations.

In Section 1.1, a brief look at Noether’s theorem for smooth systems
tells the story in a way that the analogies for finite difference and fi-
nite element can be easily seen. This is followed by a discussion of
the variational complex for difference systems. We define the difference
Euler-Lagrange operator, explain how group actions are inherited, and
give some examples. Also included is a discussion of how the theory
of moving frames can be used to find difference invariants of given Lie
group actions. These are used to construct a Lagrangian which a priori
will have a conservation law corresponding to the given group.
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The main result of this paper can be summarised as follows: instead
of proving approximate conservation of an exact quantity, we demon-
strate the possibility of exact conservation of an associated approximate
quantity. The examples are deliberately small and straightforward.

1.2 Brief review of Noether’s theorem for smooth systems

Definition 1.2.1 A conservation law for a system of differential equa-
tions is a divergence expression which is zero on solutions of the system.

For example, the heat equation u;+(—wu;), = 0 is its own conservation
law. To move from the divergence form to the more usual integral form,
integrate over an arbitrary domain, assume §; and [ commute, and
apply Stokes’ Theorem, to obtain,

0
§/§2u+ (—ug)]pq = 0.

In words, this equation reads, “the rate of change of total heat in
equals the net of comings and goings of heat across the boundary.” The
conserved quantity is (usually) that behind the time derivative in the
divergence expression.

Noether’s theorem provides a conservation law for an Euler-Lagrange
system where the Lagrangian is invariant under a Lie group action. The
Lagrangian here includes the volume form in the action integral, so we
speak of the Lagrangian form. Table 1.1 gives the standard names of
the conserved quantity for the most common group actions arising in
physical applications.

1.2.1 The Euler—Lagrange Equations

The Euler-Lagrange equations are the result of applying a “zero deriva-
tive” condition when the dependent variable in a Lagrangian form is
varied.
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Symmetry Conserved Quantity

t“=t+c

translation in time Energy

T, =x;+c¢

L. Linear Momenta vector
translation in space

X" = Rx
rotation in space

a* = d)(aab):b* = 1[)((1,b)

Datho — Pptha =1 Potential vorticity
Particle relabelling

Angular Momenta vector

Table 1.1. The usual examples

Example 1.2.2 If the Lagrangian is L[u] = % (u2 + u2,) dz then the
variation of Lu] in the direction v is, by definition,
dLlu)(v) = &| _, Llu+ev]
= (UgVsz + UzaUsz)dT
= (—wa’l} + uwzwwv)dm + % (U:cdu = 2Ugy Vg + % (uwwv))
= E(L)vdz + £n(L,v).

The Euler-Lagrange equation for this Lagrangian is Ugppy — Ugy = 0.

For the purposes of this article, the way to think of the Euler-Lagrange
operatoris as E =mo 8, where 7 projects out the total derivative (to-
tal divergence) term. In the case of more than one dependent variable,
where each one varies separately, we obtain an equation for each depen-
dent variable. For example,

aL[ul,uz](vl,vz) = 4 oLlu' + v’ u? + ev?]

= EY(L)v'dz + E*(L)vidz + £=n(L,v).
The Euler-Lagrange system is then E*(L) = 0, i = 1,2. General for-

mulae, explicit, exact, symbolic, for E* and n(L,v) are known, (Olver
(1993)).

1.2.2 Variational Symmetries

Symmetries of differential structures are studied in terms of Lie group ac-
tions. A Lie group is one whose elements can be parametrised smoothly
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by real (or complex) numbers. (More technically, a Lie group is a dif-
ferentiable manifold with a group product, such that the multiplication
and the inverse maps are smooth functions.) It turns out it is sufficient
to study actions of one-parameter subgroups of Lie groups.

Definition 1.2.3 A subgroup of the Lie group G is called a one-parameter
subgroup if it is parametrised by R, so that g(€) € G for all ¢ € R, and

9(€) - 9(8) = g(e +9).

For example, the set

{07 wn ) 1e€%)

is a one-parameter subgroup of SL(2,R), the special linear group of 2 x 2
matrices with determinant equal to one.

Definition 1.2.4 A (right) action of a group G on a space M is a
smooth map

GxM— M, (9,2) > g-2
such that
g1+ (92 - 2) = (9291) - 2.

For a one-parameter subgroup this becomes
9(6) - (9(e) - z) = g0 +€) - 2.

Example 1.2.5 For the group G = (R,+), that is, the real numbers
under addition, the projective action on the plane is given by
. x _u(z)

ez=2"=—r, e-u=u"(z")

(1.1)

This is actually only a local action since e is restricted to a neighbour-
hood of 0 € R, where the neighbourhood depends on z. We demonstrate
the group action property:

T l—ex’

T

5. T . 1—=06z _ T _ )
0-(e-z)=194 (1_€x)—1_€ T _1—(e+5)x_(6+6) x.
1-dzx

For actions on X x U where X is the space of independent variables
and U the space of dependent variables, then an action is induced on the
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associated jet bundle. This is called the prolongation action and is ob-
tained using the chain rule of undergraduate calculus. Thus, continuing
Example 1.2.5,

€l = = ey Tor T - en)?

and checking this indeed gives a group action,

0 - Uy Uy
Ol u) = TG o - A=G+ 90

Given a prolongation action, we then have an induced action on the
integral of the Lagrangian form, given by

€ JoL(x,u,ug,...)dz = [ oL(e-x,€-ue-uyp,---)de -2

de-zx

dz

(1.2)
where the first line is the definition of a group action on an integral, and
the second follows by regarding the group action as a change of variable,
back to the original domain. If the Lagrangian is invariant under this
group action for arbitrary Q, then by standard arguments (involving the
Hilbert space L?),

= JoL(e-z,e-ue-ug,--)

de-x
dz

L(z,u,ug,...) =L(e-z,e-u,€-uy,---)
for all e.

Definition 1.2.6 The infinitesimal action corresponding to that of a

one-parameter group with parameter € is obtained by applying P to
€le=0
the transformed variables.

Continuing Example 1.2.5, we have

d o= 22 d
€1 — <4
’ de

d
€-U = U, —

€Uy = 22Uy.
e=0 de

e=0

dele=0

If ¢ indexes the independent variables and « indexes the dependent
variables, we denote the infinitesimal action on these by

I TR |
" dele=o T T e

¢a

6206 T (13)
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Definition 1.2.7 With ¢* and &; as defined in (1.3), the characteristic
of the group action is the vector @ = (Q%), with

Q¥ =0~ =) &ul.
i
We can now state Noether’s Theorem.

Theorem 1.2.8 If Q% are the characteristics of a variational symmetry
of a Lagrangian form, then

Q- E(L) =) Q“E*(L) = Div(A(Q, L))
where precise expressions (symbolic, exact, analytic) for A(L,Q) are
known (Olver (1993), Proposition 5.74).

In words, given a symmetry of a Lagrangian, there is a divergence ex-
pression, Div(A(L, ))) which is zero on solutions of the Euler—Lagrange
system, E%(L) = 0.

On the simplest level, the proof involves a manipulation of the expres-
sions involved. In order to translate the theorem to a discrete setting,
we need to look at the algebraic underpinning of the proof. This consists
of the variational complex which we now briefly describe. Full details
may be found in (Olver (1993)).

1.2.3 The variational complex

The variational complex based on a p-dimensional space is constructed
from the commutative diagram,
D D
—

— Ap—1 AP i) Kl i) Kz i)
!

lm ™ (1.4)
AL, 5 oaz, Y

Brief description of the components of (1.4):

The spaces A¥ on the left of the diagram (1.4) are k-forms in the inde-
pendent variables, but where the coeflficients may depend, in a smooth
way, on a finite number of dependent variables and their derivatives. The
map D is the total exterior derivative. For example, in two dimensions,
D(u;dy) = ugzydzdy. The spaces A7 are the so-called vertical k-forms,
that is, forms in the dependent variables and their derivatives, multiplied
by the volume form on the base space. For example, in a two dimensional
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space, z2uzu,dudu,dzdy € A2. The map d is the exterior derivatives
in the vertical direction. Thus, a(xyuﬁdxdy) = 2zyuzdu,dzdy.

The first step in the calculation of the Euler-Lagrange operator in
Example 1.2.2 is indeed the map d. Using the exterior form notation,
the calculation becomes

(ugpdug + Ugedug,)de
(—Ugedu + Ugggedu)de

+ 52 (ugdu — 2ugpdug + 2= (ugedu))
= E(L)dudz + £n(L).

~

d(Ldz)

As is seen in this example, the “integration by parts” step uses an action
of the operator D/Dz on the forms, for example

D
E(ﬁduw) = 2uduy + u2dug,

and so forth. This generalises to higher dimensions, so that there is an
action of the total divergence operator on the Ak

The spaces A¥, are defined as equivalence classes of vertical forms;
two forms are equivalent if they differ by a total divergence. The map
d, is then the maps d as induced on these classes, while the maps 7 are
the projection maps. The Euler-Lagrange operator is then dom.

Definition 1.2.9 The variational complez, given here for a p-dimen-
sional base space, is

s By prt Bygp By pr, ey g2 Aoy (1.5)

Note that the map d. is denoted by d in (Olver (1993)). We reserve the
notation § for the simplicial coboundary map needed in section 1.3.

Theorem 1.2.10 (Olver (1998)) The complex (1.5) is exact. That is,
the image of one map equals the kernel of the next.

Thus, if E(L) = 0 then L is necessarily in the image of D. Since D
on AP~! is essentially the total divergence operator, this means that E
is zero, and only zero on, total divergences. The proof of this result
is constructive, that is, formulae for the pre-images are known. These
formulae are given in terms of homotopy operators which can be used,
at least in principle, in ansatz methods for finding conservation laws not
necessarily arising from Noether’s Theorem. In practice, more direct
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methods are often used (Wolf (2000), Wolf (2003), Wolf, Brand and
Mohammadzadeh, (1999)).

The infinitesimal form of a Lie group action induces an action on
forms. To describe this, we make the following definitions.

Definition 1.2.11 Given the characteristic of an action Q = (Q%) given
in Definition 1.2.7, we define the characteristic vector

0
vQ = ZDK(QQ)@
a,K

where a indezes the dependent variables and K is a multi-index of dif-
ferentiation.

The inner product of a vector with a form is given by

0

o 0
au?{Jdu§=5ﬁt55{, —— ydz; =0

[e3
oug

where § is the Kronecker delta, and acts on products as a signed deriva-
tion. Thus, for example,
D2Q

dug, — f(u) D—:UZduE'

D@

v fu)dugdug, = f(u) 5=

Noether’s theorem is obtained by considering the map vg _j o d and
hence vg _j o E;

E

Dypr = pr, 4y (1.6)
(_
VQ_|

It is straightforward to show that the induced infinitesimal action of a
Lie group on a Lagrangian form has the formula,

% € =vou dL[u] + Div(L¢) (1.7)

where £ = (&1,...,&).

If the Lagrangian is invariant, the left-hand side of (1.7) will be zero.
Since aL[u] =Y E*(L)du“dx + Div(n(L)) and vg has no 98/8z; terms,
so that Div and vg _| commute, Noether’s theorem follows.

Example 1.2.12 Consider the Lagrangian, L{u] = % (%)2 dz, which is
invariant under both translation in x and scaling in uw. The associated
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Euler—Lagrange equation is

2

u Uz
E(L) = u—’; — 2
For the translation action, Q = —u, since ¢ =0 and & = 1. And indeed,
1d [u?
—u B(L)==— 2.
uB(L) 2dz (UQ)

For the scaling action, Q =u, as  =u and £ =0, and so

wE(L) = —% (%) .

A more significant example can be found in (Bila, Mansfield and
Clarkson, (2005)) where conservation laws arising from symmetries of
a meteorological model are classified.

In summary, the algebraic part of the proof of Noether’s theorem in-
volves a variational complex and an infinitesimal group action. Emulat-
ing the algebraic pattern, rather than the analysis, is the key to success
for the construction and proof of the discrete Noether’s Theorems.

We next look at the translation of these concepts for difference sys-
tems.

1.3 Difference Systems

We will consider a difference Lagrangian L{u2] to be a smooth function
of a finite number of difference variables and their shifts. Such difference
Lagrangians may result from a discretisation of a smooth Lagrangian,
but not necessarily. Since there exist inherently discrete systems with
perhaps no continuum limit, we limit the types of calculations we per-
form here strictly to those operations pertinent to such systems.

We regard the lattice coordinates n = (n!,...,nP) € ZP as the in-
dependent variables. The dependent variables u, = (u),...,ud) are
assumed to vary continuously and to take values in R. Let 1; be the
p-tuple whose only nonzero entry is in the k*M place; this entry is 1.
Then the k** shift map acts as

Skp:n—n+ 1, Sk:fm)— f(n+ 1) Sk :uﬁl—>u5+1k,
Sk :f(n,...,uﬁ+m,...) ~ f(n+ lk,...,uﬁ+m+1k,...)

where f is a smooth function of its arguments. Note that the shift maps
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commute (i.e. SpS; = S;Sk), We write the composite of shifts using
multi-index notation as

R (1.8)

so that, for example, ul_ ., = S™uf.

Definition 1.3.1 A function F[u] is said to be a total difference if
there is a vector (A1[u2],--- Ap[u?]) such that
F= (S —id)A; +--- 4+ (Sp —id)A4,.

Definition 1.3.2 A difference conservation law for a difference system
is a total difference which is zero on solutions.

Example 1.3.3 The standard discretisation of the heat equation,
Un,m+1 — Un,m = Un+1,m — 2Un,m + Un—1,m
is a difference conservation law for itself, since it can be written
(S1 —id)[(S1 — id)(—un—1,m)] + (S2 — id)up,m = 0.

Just as an integral of a total divergence depends only on the boundary
data, so does the sum over a lattice domain of a total difference.

1.3.1 The difference Euler—Lagrange operator

As with smooth systems, the difference Euler—Lagrange equations result
from a “zero derivative” condition when a difference Lagrangian is varied
with respect to its variables. The “integration by parts” step of the
calculation is replaced by, in one dimension,

D (SHngn =Y (ST 9)n+ (S —id) D (fa(S " 9)n)-
Example 1.3.4
d(L,) = d (362 + upung1)
= (upduy + Unyr1duy + undtngr)
= (up + Ung1 + Up1)dun + (S — id) (unduni)

= E(Lp)dun + (S —id)(n(Ly))-
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General formulae, (explicit, exact, symbolic), for E and 5(L,,) are known
(Hydon and Mansfield (2004)).

As for the smooth case, we define the difference Euler-Lagrange op-
eratortobe E =7 oa, where 7 projects out the total difference term. If
there is more than one dependent variable, we obtain one equation for
each dependent variable, for example in one dimension,

d(Lp[u,v]) = B¥(Ly)duy + EY(Ly)dv, + (S —id) (n(Ly)).

1.3.2 Difference variational symmeltries

If the difference equation arises as a discretisation of a smooth system,
where there is a group action on the base space, then we can treat
the mesh variables z,, as dependent variables (recall the independent
variables are now the integer lattice co-ordinates), see Example 1.3.7
below. The induced group action will satisfy the property that the
group action commutes with shift:

€S (un) = € unyj = e up
for all 5. For example,

Un Un+j

1—€expyj

€ Up implies €-Uptj =

= 1—e€x,
We will assume this property for any group action on a difference sys-
tem, not just those arising from discretisations.

The symmetry condition is that L[u®] is an invariant function,

Ln(ug1 [ 7uﬁik) = Ln((:' : uﬁla Ty € uﬁik)' (19)
Defining the characteristics of the symmetry to be
d
> = — o 1.10
Qn d6 e:(]un ? ( )
and applying
d
dele=o0
to both sides of (1.9) yields
0Ly
0= — Qo (1.11)
- ug P

Since by our assumption,

g—i—k = Sk(Qﬁ):
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equation (1.11) can be written as
0=Xg_ydLy,

where

ey O
Xo=2 8@ g
@,

n+j

Theorem 1.3.5 The difference Noether’s theorem. If the symme-
try condition (1.9) holds, then with the characteristics of the symmetry
defined in (1.10),

Q-E(Ln) =) (Sj — id)(AL(Qn, Ln))-
J

Thus a symmetry yields a total difference expression which is zero on
solutions of the difference Euler-Lagrange system. Explicit formulae for
An(Qn, Ly) are known (Hereman, Colagrosso, Sayers, Ringler, Decon-
inck, Nivala and Hickman, (2005), Hereman, Sanders, Sayers and Wang,
(2005), Hydon and Mansfield (2004)). As for the smooth system, these
quantities are defined in terms of homotopy operators which may be
used to obtain conservation laws, not necessarily arising from Noether’s
theorem, in ansatz-based methods.

The similarity of the formulae to those of the smooth case is striking,
particularly when the formulae for A,(Qn, Ln)) and A(Q, L)) are com-
pared. In fact, the algebraic underpinning of the difference Noether’s
theorem matches that of the smooth. One can build a diagram in com-
plete analogy to (1.4), and the locally exact variational complex for
difference systems is

S Exr ! S Exr Al Ay A2 ey
where Ex™ is a difference analogue of A™ and Al are j-forms in the
difference dependent variables and their shifts, modulo total differences.
The diagram corresponding to (1.6) is

E
SyExr T ALy (1.12)
XoJ

Note that the map d. is denoted by § in (Hydon and Mansfield (2004)).
We reserve the notation § for the simplicial coboundary map needed in
section 1.3.
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Remark 1.3.6 The difference Noether’s theorem is independent of any
continuum limit. This is important since there are difference systems
with multiple limits, or even no continuum limits at all. In cases where
the difference system does have a continuum limit, it is interesting to
note that in the examples studied, the Euler—Lagrange system and the
conservation law also have continuum limits, and indeed limit to their
corresponding quantities, but no proof of a general result is known.

Example 1.3.7 This elementary example is taken from the Introduc-
tion of Lee (1987), and concerns a difference model for the Lagrangian,

J(33%* — V(z))dt. Define
Vo =—— [ v
n= i z)dz
and take

(tn — tn—1)-

I 1 /2, —2n_1 2 % (n)
=|z({————) —-V(n
" 2 tn - tn—l

The group action is translation in time, t}, = t, + €, with z, invariant.
The conserved quantity is thus “energy”. Now, QY = 1 for all n, and

¥ = 0. The Euler-Lagrange equation for the t,, viewed as a dependent
variable, is

0 = E{(L,) = %Ln+s(—8tf_an)

and since Ly, is a function of (t, — th—1),

0=EYL,) = (S —id) (%LO

verifying the difference Noether Theorem in this case. The first integral
(conservation law) is thus

L(zn=an-1)” +V(n)=c
2 thn —tn1 -
Note that the energy in the smooth case is

L.y
R V4

Zx +

showing the continuum limit of the energy for the difference system is

the energy for the smooth system.
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Remark 1.3.8 The FEuler-Lagrange equations for the mesh variables
could well be regarded as an equation for a moving mesh. It may be
appropriate to add terms to the difference Lagrangian that keep the mesh
from collapsing or folding.

1.3.3 Building in a conservation law to a difference
vartational system

If we know the group action for a particular conservation law, we can
“design in” that conservation law into a discretisation by taking a La-
grangian composed of invariants. The Fels and Olver formulation of
moving frames (Fels and Olver (1998), Fels and Olver (1999)) is par-
ticularly helpful here. A sample theorem concerning difference rotation
invariants on Z?2 follows. Consider the action,

6‘(wn>:(c9se —s1ne)<xn)‘ (1.13)
Un sine cose Yn

Theorem 1.3.9 Let (21, Yn), (Tm,Ym) be two points in the plane. Then

In,m = ZnYn + TmYm, Jn,m = TnYm — TmYn

generate the invariants under the action (1.13); any planar rotation dif-
ference invariant is a function of these.

Example 1.3.10 We consider a difference Lagrangian which is invari-
ant under the action (1.13). Suppose

1

1
L,= §J12L,n+1 = §($nyn+1 - $n+1yn)2-

Then the Euler—Lagrange equations are

E = Jpnt1Ynt1r — In—1,nYn—1,
E% = —JInn+1Tn41 + Jn—l,nxn—l-
Now, Qn, = (Q%,Q%) = (=yn,Tn) = %L:O(x;,y;) and thus
Qn -E, = Jn,n—i—l(_ynyn-i-l - -Tn-'L'n—i-l)

+Jn—1,n(ynyn—1 + xnxn—l)
_Jn,n+1In,n+1 + Jn—l,nIn—l,n
_(S - id)(Jn—l,nIn—l,n)
gives the conserved quantity. Since the group action is a rotation, the
conserved quantity is “angular momentum”. Note that I, 1, = Iy, n and

Jn,m = _Jm,n-
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Knowing the invariants is actually only half the battle, if you also
require that the difference Lagrangian has a particular continuum limit.
For one-dimensional systems, the theory of multispace can be used to
obtain invariance under a given group action and a given limit simulta-
neously, see Olver (2001), Mansfield and Hydon (2001).

1.4 Finite Element systems

In obtaining a Noether’s theorem for finite element approximations, we
base our discussion on the variational complex developed in Mansfield
and Quispel, (2005). This in turn, is based on the discussion of nu-
merically stable finite element approximations given in Arnold, (2002).
We first look at a simple one-dimensional example. The analogies with
the finite difference case here are sufficiently strong that we can obtain
immediate results. We then discuss the higher-dimensional case.

1.4.1 The one dimensional case

We give an example of a system of moments that fit a commutative
diagram and show how the Euler-Lagrange equations are derived. Let
the “triangulation” of R be given by ...Z, 1,%n, Tnt1,.-.- We choose
moment-based approximations for 0-forms (functions), and 1-forms so
that the following diagram is commutative in each (Z,, Zn41);

0—R — A" 4 A1 0

o | I | (1.14)
0—R — Fo 5 7 —0

The maps II; are projections to piecewise defined forms.

Example 1.4.1 In this ezample, the piecewise projection of 1-forms is

F@sl sy = ([ S@nla)dn) da

where ¥y, is given diagrammatically as
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Yn

area|= 1

Tp Tntl Tn41

Here Tppl is any intermediate point, and ¢n($n+%) is chosen so that

the integral f;ﬂ"“ ¥, = 1. The moments used to approzimate functions
are

1 Tn+d 1 Tntl
a, = 7/ *u(z)de, B, = 7/ u(z) da.
wn—i—% —Tn Jg 1

Tn+1 — mn—i—% T, 1
2

n

Commutativity means that

d
Iy (uydx) = (—Ho(u)) dz, (1.15)
dz
while the projection property is that
Hi o H,’ = Hz

So, we take the projection of u|(s, z,,,) USiNg Qn, Bn to be

—Q Tyl + Tn41
Tn+l — ITn Tn+l — ITn

Tyl + 1z,
- () g,
Tnt1 — Tn
The moments a,, and 3, are not unrelated, however. The formulae are

the same, only the domains differ. In effect, B, = Qpy 1. So, we can
define a shift map S so that

S(n) = n+4,
S(an) = Ba,
S(ﬂn) = Qn+1-.

We consider the simplest Lagrangian £ = [ %ui dx which projects to

=% [ juwta = Yol 2 5,

Tnt+1 — Tn
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Then

dL, 4Bn=an (48 _ day,)

Tnt1—Tn

= 4M(ds(an) —day)

Tnt1—Tn

= 4 (S‘l (S(a")_a"> - S(a")_a") day, + (S — id)(something).

Tn4+1—Tn Tn+1—Tn

The discrete Fuler—Lagrange equation is the coefficient of da,,. After
“integration”, and setting B, = a, 1

Qpy1 =0

I
o

Tn41 — Tn

which has the correct continuum limit.

We note that usually the approximation of functions is chosen so that
the result is still continuous. This is an additional requirement that our
calculations don’t seem to need.

The main conjecture is that provided the system of moments used to
project the forms fits the commutative diagram (1.14), then an Euler—
Lagrange system, in the form of a recurrence system and having the
correct continuum limit, can be derived (Mansfield and Quispel (2005)).
As earlier, this will be a zero derivative condition obtained when the
projected Lagrangian is varied with respect to the independent moments,
modulo the analogue of a total difference.

We will show in Section 1.4.3 how a group action acting on depen-
dent and independent variables induces an action on moments given as
integrals.

1.4.2 The higher-dimensional case

We give the three-dimensional case; there are no significant changes for
higher (or lower!) dimensions.

Given a system of moments and sundry other data, also known as
degrees of freedom, we require that these yield projection operators such
that the diagram (written here for three-dimensional space) commutes:

0—R — A" — A —AZ — A3 —0
o | o, | o, | I | (1.16)
0—R —F —F! —F2 —F —0

all relative to some triangulation.
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In general, a Lagrangian is composed of wedge products of 1-, 2- |
...p- forms. In Arnold (2002) it is argued that if the approximation of
an n-form is taken to be its projection in F", then commutativity implies
conditions for Brezzi’s theorem (Brezzi (1974)), guaranteeing numerical
stability, will hold.

Thus a finite element Lagrangian is built up of wedge products of
forms in Fo, Fi, ... Fp_1, Fp, with unevaluated degrees of freedom. Call
the space of such products, f'p. In each top-dimensional (p-dimensional)
simplex, denoted 7, integrate to get

L=3"L,(a,---a)

where o is the j'* degree of freedom in 7. Note that L can also depend
on mesh data z,. We can now take the finite element vertical exterior
derivative, &, to be the variation with respect to the a?.

There will be analogues of the shift maps that take moments defined
on one simplex to moments defined on nearby simplexes.

The analogue of total divergence or total difference is the cobound-
ary concept from simplicial algebraic topology which we define next. A
coboundary has the key property that for topologically trivial domains,
its integral depends only on data defined on the boundary of the do-
main of integration. It is the generalisation, to an arbitrary mesh, of a
telescoping sum.

Definition 1.4.2 Let X be a simplicial (triangulated) space. Denote
by Cn(R) the vector space formed by all formal, finite sums of the n-
simplexes of X with coefficients in R. There is a boundary map

0: C_n —)C_n_l

obtained by mapping each simplex to the sum of its boundary edges,
signed according to whether the orientation of the edge is that induced
by the orientation of the simplex or its opposite, and extended linearly.

Example 1.4.3 In Figure 1.1 we show an oriented simplex T together
with its oriented edges e;. The boundary OT = e; — es + e3, where the
signs are determined by whether the orientation on T induces the given
orientation on the edge, or not.

See Frankel (1997), Chapter 13 (in particular 13.2b), for a readable
account of oriented chains and the boundary map.



Discrete Noether Theorems 21

€2 €1

€3
Fig. 1.1. (1) =e1 —e2+es3

Definition 1.4.4 For the simplicial space X, an n-cochain with coeffi-
cients in R is a map ¢ : C,, — R. The set of simplicial n-cochains is
denoted C". The coboundary map

5:Cn — g
is defined by
(6¢)(0) = ¢(00).

For the simplex in Example 1.4.3, if ¢(e;) = ¢;, then (0¢)(7) =1 —ca +
C3.

If a cochain 1) is of the form d¢ for some cochain ¢, we say simply
that ¢ is a coboundary. If the simplicial space is in fact a regular
triangulation, it will be possible to write coboundaries in the form of a
total difference.

For the variational calculations that we consider, the coefficients R
are vertical forms in the da” which themselves have coefficient functions
of the moments, the mesh variables, and so forth.

We can finally define the Finite Element Euler-Lagrange operator to
be

E:ﬂ-oaof

where [ is the integration over each p-dimensional simplex that is used
to obtain the projected Lagrangian, and 7 is the projection map to
equivalence classes, where two forms are equivalent if they differ by a
p-dimensional coboundary. (Recall p is the dimension of the base space.)

The variational complex for the Finite Element Method (Mansfield
and Quispel (2005)), is then

d, &1 d, 7 E
— Frl = FF = Fl =S FE S
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where:

o F, is the algebra generated by the F; with unevaluated degrees of
freedom

ed,=mo d is the vertical exterior derivative, that is, with respect to
the degrees of freedom, modulo coboundaries,

o F; is the algebra of vertical forms modulo p-dimensional cobound-
aries.

Looking now at the analogue of (1.6) and (1.12) for the Finite Element
variational complex, we can tentatively write
~ B ~
— FrF — F,—
—

vQ _J

(1.17)

Taking L, € f'p, if the natural symmetry condition holds, that is
vg 1 d(L;) = 0 (or, more generally, is a coboundary), we will have the
Finite Element Noether’s Theorem,

0=5"0Q, - B(L,) +3(n(L, Q). (1.18)

There are two problems. One is to find the general formula for both
E and n(L, Q) for an arbitrary mesh. If the mesh is regular, then E and
(L, Q) will be easily derivable from arguments analogous to those for
the difference case. There are increasingly many computational argu-
ments in favour of considering cubical simplicial spaces; see Kaczynski,
Mischaikow and Mrozek (2003), for an exposition. In this case, cobound-
aries are essentially total differences.

The second problem is to define vg, which requires determining the
infinitesimal action that is induced on the moments and other degrees
of freedom. In the next section, we address this second problem.

1.4.3 Group actions on moments

For degrees of freedom that are values of a function at a particular
point, the induced action is the same as for the function itself, and
the discussion in Section 1.3.2 applies. For degrees of freedom that
are moments defined by integrals, we can use results for the variational
symmetry group action on Lagrangians derived earlier. Thus, given a
group action on the independent and dependent variables, we take as
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a definition of the induced group action on the moment with weight
function 1,

/f dm—/f €-T,€-u,--)(e- QJ)D];;Ij dz. (1.19)

Example 1.4.5 Suppose the group action is translation in x, so that
€-r = = + €, while the dependent variables are invariants, € - u = u.
Then the induced action on the moments

o’ :/a:judx (1.20)
T

18

€-al al,

e-al = ol +edd,

e-a? = o +2eal+eal,
and so forth. Thus,

;d ; g
Q=] (e-ad)=jai™,

e=0

whence
vg = ZJ 6a

If the mesh variables x,, are also regarded as dependent (i.e. movable)

then one would add
0
Zn oz,

to this vector. The zeroth and first-order moment invariants are gener-
ated by

0 0 1,0

9, alal —alal

while the second-order invariants are generated by

af(ag)? — 2050707 + (az)%af,
where T and o are not necessarily distinct simplexes. The method of
moving frames shows that any moment invariant (to order two) is a
function of these. Allowing movable mesh variables, we have that T,—x,

is an invariant, as is a2z, — al.
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1.4.4 Building in a conservation law

The algebra underpinning Noether’s theorem shows that designing a
conservation law into a numerically stable scheme requires a number of
conditions to be met on the choice of moments and how the Lagrangian
is approximated.

e The approximation of forms is required to fit into a commutative
diagram, (1.16) not only for stability but for the variational complex
to be applicable.

e The induced group action probably should involve essentially a finite
number of moments, so it may be necessary to use symmetry-adapted
moments. For example, if the group action is the projective action,
(1.1), then the index j in the moments (1.20) needs to be in the range
—N,---,-3.

e The projected Lagrangian form needs to be invariant under the in-
duced action and have the correct continuum limit.

1.5 Conclusions

Instead of the approximate conservation of an exact law, the algebraic
arguments offered here yield exact conservation of an approximate law!
Clearly much remains to be done to bring these ideas into the practical
arena, in particular the analytic problem of achieving everything listed
in Section 1.4.4 for some interesting applications. Another problem is,
how does the order of approximation of the conservation law compare to
the order of approximation of the scheme? Whether such schemes prove
efficient and useful is for the future to decide. Nevertheless, schemes
with guaranteed conservation laws appear to be possible.
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