NONEXPANSIVE MAPPINGS ON HILBERT'S METRIC SPACES

Bas Lemmens

Abstract

This paper deals with the iterative behavior of nonexpansive mappings on Hilbert's metric spaces $\left(X, d_{X}\right)$. We show that if $\left(X, d_{X}\right)$ is strictly convex and does not contain a hyperbolic plane, then for each nonexpansive mapping, with a fixed point in X, all orbits converge to periodic orbits. In addition, we prove that if X is an open 2 -simplex, then the optimal upper bound for the periods of periodic points of nonexpansive mappings on $\left(X, d_{X}\right)$ is 6 . The results have applications in the analysis of nonlinear mappings on cones, and extend work by Nussbaum and others.

1. Introduction

In [11] Hilbert introduced the following metric spaces which generalize the Cayley-Klein model of the hyperbolic plane. Let $X \subseteq \mathbb{R}^{n}$ be a bounded open convex set. For $x \neq y$ in X define the distance between x and y to be the logarithm of the cross-ratio,

$$
\left.[a, x, y, b]=\frac{|a y|}{|a x|} \right\rvert\, \frac{|b x|}{|b y|},
$$

where a and b are the points of intersection of the straight-line through x and y and the (Euclidean) boundary, ∂X, of X such that x is between a and y, and y is between b and x, see Figure 1 .

[^0]

Figure 1. Hilbert's metric
So, for $x \neq y$ in X,

$$
d_{X}(x, y)=\log [a, x, y, b] .
$$

The metric d_{X} is called Hilbert's metric on X. In case X is the interior of an ellipse, $\left(X, d_{X}\right)$ is a model for the hyperbolic plane.

Hilbert's metric is a natural example of a projective metric, meaning that straight-line segments are geodesics, and plays a role in the solution of Hilbert's fourth problem [1]. In this paper we study the iterates of nonexpansive mappings $g: X \rightarrow X$ on Hilbert's metric spaces, so

$$
d_{X}(g(x), g(y)) \leq d_{X}(x, y) \quad \text { for all } x, y \in X
$$

Motivating examples arise from nonlinear mappings on cones. More precisely, let $C \subseteq \mathbb{R}^{n+1}$ be a closed cone with non-empty interior C°, and let $C^{*}=\{\phi \in$ $\mathbb{R}^{n+1}:\langle x, \phi\rangle \geq 0$ for all $\left.x \in C\right\}$ denote the dual cone. The cone C induces a partial ordering \leq_{C} on \mathbb{R}^{n+1} by $x \leq_{C} y$ if $y-x \in C$. Suppose that ϕ is in the interior of C^{*} and let $X_{\phi}=\left\{x \in C^{\circ}:\langle x, \phi\rangle=1\right\}$, which is a bounded, convex, relatively open set. Now if $f: C^{\circ} \rightarrow C^{\circ}$ is a monotone mapping, i.e. f preserves \leq_{C} on C°, and f is homogeneous of degree 1 , then $g: X_{\phi} \rightarrow X_{\phi}$ given by,

$$
\begin{equation*}
g(x)=\frac{f(x)}{\langle f(x), \phi\rangle} \quad \text { for all } x \in X_{\phi} \tag{1.1}
\end{equation*}
$$

is nonexpansive under Hilbert's metric, see [5], [22]. The original idea to use Hilbert's metric in the analysis of cone mappings is due to Garrett Birkhoff [3] and H. Samelson [26], who used it to analyze eigenvalue problems for linear operators that leave a closed cone in a Banach space invariant.

Interesting nonlinear examples arise in optimal control and game theory [7], [25], matrix scaling problems [23], and the analysis of diffusions on fractals [18], [21]. In these applications it is often important to understand the iterative behavior of $g: X_{\phi} \rightarrow X_{\phi}$ in (1.1).

The goal of this paper is to analyze the iterates of mappings $g: X \rightarrow X$ which are nonexpansive with respect to Hilbert's metric, for strictly convex domains X, meaning that ∂X does not contain any straight-line segments, and for X an open n-simplex. It is important to distinguish two cases: g has a fixed point in X, and g does not have a fixed point in X. In the second case it follows from a result by A. Calka [6] that the limit points of each orbit of g are contained
in the boundary of X. In fact, Nussbaum [24] and Karlsson have conjectured independently that, in that case, there exists $\Lambda \subseteq \partial X$ convex such that the limit points of all orbits of g are contained in Λ. If X is a strictly convex, the conjecture is known to be true [2] and Λ reduces to a single point. Partial results for general domains were obtained in [2], [12], [13], [17], [24].

In this paper we shall restrict ourselves to the first case and assume that g has a fixed point in X. We prove the following result.

Theorem 1.1. Suppose that $\left(X, d_{X}\right)$ is a strictly convex Hilbert's metric space and there exists no 2-dimensional plane P such that $X \cap P$ is the interior of an ellipse. If $g: X \rightarrow X$ is nonexpansive under Hilbert's metric and g has a fixed point, then every orbit of g converges to a periodic orbit. In fact, there exists an integer $q \geq 1$ such that $\left(g^{q k}(x)\right)_{k}$ converges for all $x \in X$.

In other words, each orbit of a nonexpansive mapping converges to a periodic orbit if the domain does not contain a hyperbolic plane and the mapping has a fixed point.

If the domain X is an open polytope, i.e. the intersection of finitely many open half-spaces, then it is known [22], [27] that there is convergence to periodic orbits for nonexpansive mappings $g: X \rightarrow X$ with a fixed point in X. Moreover, there exists an a priori upper bound for the possible periods in terms of the number of facets of X. The current best estimate, obtained in [16], is

$$
\max _{k=1, \ldots, m} 2^{k}\binom{m}{k}
$$

where $m=N(N-1) / 2$ and N is the number of facets of X. This upper bound is believed to be far from optimal. Finding a sharp upper bound appears to be a hard combinatorial geometric problem, even when X is an open n-simplex. For the 2-simplex, however, we prove the following result.

Theorem 1.2. If X is an open 2-simplex, then the optimal upper bound for the periods of periodic points of nonexpansive mappings on $\left(X, d_{X}\right)$ is 6 .

2. Preliminaries

Let (Y, d) be a complete metric space, and $g: Y \rightarrow Y$ be a continuous map. The orbit of y under g is denoted by $\mathcal{O}(y)=\left\{g^{k}(y): k=0,1, \ldots\right\}$. A point $y \in Y$ is called a periodic point if $g^{p}(y)=y$ for some integer $p \geq 1$, and the smallest such $p \geq 1$ is called the period of y. For $y \in Y$ the ω-limit set of y under g is given by,

$$
\omega(y ; g)=\left\{x \in Y: \lim _{i \rightarrow \infty} g^{k_{i}}(y)=x \text { for some subsequence } k_{i} \rightarrow \infty\right\}
$$

Furthermore we write $\Omega_{g}=\bigcup_{y \in Y} \omega(y ; g)$ to denote the attractor of g.

Clearly $\omega(y ; g)$ is closed and $g(\omega(y ; g)) \subseteq \omega(y ; g)$. It is not hard to show that if $g: Y \rightarrow Y$ is continuous, $\mathcal{O}(y)$ is pre-compact, and $|\omega(y, g)|=q$, then $\left(g^{q k}(y)\right)_{k}$ converges to a periodic point of g with period q. Moreover, if $g: Y \rightarrow Y$ is nonexpansive, g has a fixed point in Y, and the orbit of each point in Y is precompact, then each $\omega(y ; g)$ is a non-empty compact set, and $g(\omega(y ; g))=\omega(y ; g)$. Furthermore it was shown in [8] that $\omega(x ; g)=\omega(y ; g)$ for all $x \in \omega(y ; g)$, and the restriction of g to $\omega(y ; g)$ is an isometry, see [10].

A metric space (Y, d) is called proper if every closed ball is compact. Hilbert's metric spaces are separable and proper, since their topology coincides with the norm topology, see [22]. As the iterates of a nonexpansive mapping form an equicontinuous family, one can use an Arzelà-Ascoli type argument to prove the following assertion, see [4, p. 9] for details.

Lemma 2.1. If (Y, d) is a separable proper metric space and $g: Y \rightarrow Y$ is a nonexpansive mapping with a fixed point in Y, then every subsequence of $\left(g^{k}\right)_{k}$ has a further subsequence which converges uniformly on compact subsets of Y.

Lemma 2.1 can be used to prove the following proposition concerning the existence of a nonexpansive retraction on Ω_{g}. The argument is a straightforward adaptation of [15, Proposition 2.1].

Proposition 2.2. If (Y, d) is separable proper metric space and $g: Y \rightarrow Y$ is a nonexpansive mapping with a fixed point on Y, then there exists a nonexpansive retraction $r: Y \rightarrow Y$ onto Ω_{g} and the restriction of g to Ω_{g} is an isometry.

3. Strictly convex domains

Recall that a path $\gamma:[r, s] \rightarrow\left(X, d_{X}\right)$ is called a geodesic if

$$
d_{X}\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right| \quad \text { for all } t_{1}, t_{2} \in[r, s]
$$

A geodesic segment is the image of a geodesic in $\left(X, d_{X}\right)$. It is a well-known fact that if X is strictly convex, then $\left(X, d_{X}\right)$ is uniquely geodesic [4, p. 106]; so, the only geodesic segments are the straight-line segments. For $x, y \in\left(X, d_{X}\right)$ we write $[x, y]$ to denote the straight-line segment connecting x and y, and $\ell_{x, y}$ to denote the straight-line through x and y.

Lemma 3.1. If $\left(X, d_{X}\right)$ is a strictly convex Hilbert's metric space and $g: X \rightarrow$ X is a nonexpansive mapping with a fixed point in X, then Ω_{g} is convex.

Proof. By Proposition 2.2 there exists a nonexpansive retraction $r: X \rightarrow X$ onto Ω_{g}. Thus, $r(r(x))=r(x)$ for all $x \in X$.

Now let $x, y \in \Omega_{g}$ and put $s=d_{X}(x, y)$. Let $\gamma:[0, s] \rightarrow X$ be the unique geodesic path connecting $[x, y]$, so the image of γ is the straight-line segment
between x and y. Now let $u=\gamma(t)$, so $d_{X}(x, u)=t$ and $d_{X}(u, y)=s-t$. As r is nonexpansive, we get that $d_{X}(x, r(u)) \leq t$ and $d_{X}(y, r(u)) \leq s-t$. Now using

$$
d_{X}(x, r(u))+d_{X}(r(u), y) \leq d_{X}(x, y)=s
$$

we find that $d_{X}(x, r(u))=t$ and $d_{X}(y, r(u))=s-t$. This implies that $r(u)$ lies on the unique geodesic connecting x and y, which is $[x, y$. Thus, $r(u)=u$ and hence $u \in \Omega_{g}$.

It is convenient to embed the domain X into the affine hyperplane $H=$ $\left\{(x, 1) \in \mathbb{R}^{n+1}: x \in \mathbb{R}^{n}\right\}$ in \mathbb{R}^{n+1} by identifying X with $\left\{(x, 1) \in \mathbb{R}^{n+1}: x \in X\right\}$. Let $P\left(\mathbb{R}^{n+1}\right)$ denote the real n-dimensional projective space. So, $P\left(\mathbb{R}^{n+1}\right)$ is the set of lines through the origin in \mathbb{R}^{n+1}. Recall that $P\left(\mathbb{R}^{n+1}\right)$ can be partitioned into the set of lines intersecting the hyperplane H and the set of lines parallel to H. In other words, X is contained in the open cell of $P\left(\mathbb{R}^{n+1}\right)$. Let $V^{\prime}=\operatorname{aff}\left(\Omega_{g}\right)$ denote the affine span of Ω_{g} inside H, and put $X^{\prime}=V^{\prime} \cap X$. Let V be the vector space above V^{\prime} in \mathbb{R}^{n+1}. Thus, X^{\prime} lies in the open cell of the real projective space $P(V)=V^{\prime} \cup P\left(V^{\prime}\right)$. We write

$$
\operatorname{Coll}\left(X^{\prime}\right)=\left\{h \in \operatorname{PGL}(V): h\left(X^{\prime}\right)=X^{\prime}\right\}
$$

to denote the collineation group of X^{\prime}.
Proposition 3.2. If $g: X \rightarrow X$ is a nonexpansive mapping on a strictly convex Hilbert's metric space $\left(X, d_{X}\right)$, and g has a fixed point, then there exists a collineation $h \in \operatorname{Coll}\left(X^{\prime}\right)$ such that h coincides with g on Ω_{g}.

Proof. Let $k=\operatorname{dim} V^{\prime} \geq 1$. (The case $k=0$ is trivial.) By Lemma $3.1 \Omega_{g}$ is convex, and hence there exist x^{0}, \ldots, x^{k} in Ω_{g} such that $\operatorname{conv}\left(x^{0}, \ldots, x^{k}\right)$ is a k-simplex in Ω_{g} Let $y \in \Omega_{g}$ be in the relative interior of $\operatorname{conv}\left(x^{0}, \ldots, x^{k}\right)$. So, y, x^{0}, \ldots, x^{k} forms a projective basis for $P(V)$.

As g is an isometry on Ω_{g} and g maps Ω_{g} onto itself, $g_{\mid \Omega_{g}}$ and $g_{\mid \Omega_{g}}^{-1}$ map straight-line segments to straight-line segments in Ω_{g}. We now use a simple induction argument to prove the following claim.

Claim 1. For $0 \leq k_{0}<\ldots<k_{s} \leq k$ we have that $z \in \operatorname{conv}\left(x^{k_{0}}, \ldots, x^{k_{s}}\right)$ if and only if $g(z) \in \operatorname{conv}\left(g\left(x^{k_{0}}\right), \ldots, g\left(x^{k_{s}}\right)\right)$.

If $s=1$, then the assertion is clear as g maps the straight-line segment $\left[x^{k_{0}}, x^{k_{1}}\right]$ onto the straight-line segment $\left[g\left(x^{k_{0}}\right), g\left(x^{k_{1}}\right)\right]$. Now suppose the assertion is true for all integers r with $1 \leq r<s \leq k$. Let $z \in \operatorname{conv}\left(x^{k_{1}}, \ldots, x^{k_{s}}\right)$. The assertion is clearly true for $z=x^{k_{s}}$. So, suppose that $z \neq x^{k_{s}}$ and let ℓ be the straight-line through z and $x^{k_{s}}$. Note that ℓ intersects $\operatorname{conv}\left(x^{k_{1}}, \ldots, x^{k_{s-1}}\right)$ in a point u. By the induction hypothesis $g(u) \in \operatorname{conv}\left(g\left(x^{k_{1}}\right), \ldots, g\left(x^{k_{s-1}}\right)\right)$. As g maps $\left[u, x^{k_{s}}\right]$ onto $\left[g(u), g\left(x^{k_{s}}\right)\right.$, we conclude that $g(z)$ is in $\operatorname{conv}\left(g\left(x^{k_{0}}\right), \ldots\right.$,
$\left.g\left(x^{k_{s}}\right)\right)$. The opposite implication is obtained by applying the same argument to $g_{\mid \Omega_{g}}^{-1}$.

Claim 1 implies that $\operatorname{conv}\left(g\left(x^{0}\right), \ldots, g\left(x^{k}\right)\right)$ is a k-dimensional simplex in Ω_{g} and $g(y)$ is in its relative interior. Thus, $g(y), g\left(x^{0}\right), \ldots, g\left(x^{k}\right)$ is a projective basis for $P(V)$. Let $h \in \operatorname{PGL}(V)$ be the unique collineation that coincides with g on y, x^{0}, \ldots, x^{k}. We will show that $h \in \operatorname{Coll}\left(X^{\prime}\right)$ and h coincides with g on the whole of Ω_{g}. We need the following claim.

Claim 2. If g coincides with h on 3 distinct collinear points $x, w, z \in \Omega_{g}$, then g coincides with h on the straight-line segment $\ell_{x, z} \cap \Omega_{g}$.

To prove the claim let $a, b \in \partial X^{\prime}$ be the points of intersection of the straightline through x and z such that x is between a and z, and z is between b and x. Likewise let $a^{\prime}, b^{\prime} \in \partial X^{\prime}$ be the points of intersection of the straight-line through $g(x)$ and $g(z)$ such that $g(x)$ is between a^{\prime} and $g(z)$, and $g(z)$ is between b^{\prime} and $g(x)$. There exists a collineation f on the projective line containing $\ell_{x, z}$ that maps a to a^{\prime}, b to b^{\prime}, and x to $g(x)$. We show that f coincides with g on $\ell_{x, z} \cap \Omega_{g}$. For $u \in \ell_{x, z} \cap \Omega_{g}$, with u between x and b,

$$
\left[a^{\prime}, g(x), g(u), b^{\prime}\right]=[a, x, u, b]=\left[a^{\prime}, f(x), f(u), b^{\prime}\right]
$$

As $f(x)=g(x)$, this equality uniquely determines $g(u)$, so that $g(u)=f(u)$. The case where u is between z and a is similar. Now note that, as x, w and z form a projective basis for the projective line containing $\ell_{x, z}$, and h and f coincides on these 3 points, f and h are identical on $\ell_{x, z}$. This implies that g and h are identical on $\ell_{x, z} \cap \Omega_{g}$.

Note that for each $0 \leq l \leq k$ there exists y^{l} in the relative interior of $\operatorname{conv}\left(\left\{x^{1}, \ldots, x^{k}\right\} \backslash\left\{x^{l}\right\}\right)$ such that $h\left(y^{l}\right)=g\left(y^{l}\right)$. Simply let y^{l} be the point of intersection of $\ell_{x^{l}, y}$ and $\operatorname{conv}\left(\left\{x^{1}, \ldots, x^{k}\right\} \backslash\left\{x^{l}\right\}\right)$. It follows from Claim 1 that $g\left(y^{l}\right)$ is in the relative interior of $\operatorname{conv}\left(\left\{g\left(x^{0}\right), \ldots, g\left(x^{k}\right)\right\} \backslash\left\{g\left(x^{l}\right)\right\}\right)$. As g maps straight-line segments to straight-line segments. $g\left(y^{l}\right)$ is the unique point of intersection of $\ell_{g\left(x^{l}\right), g(y)}$ and $\operatorname{conv}\left(\left\{g\left(x^{0}\right), \ldots, g\left(x^{k}\right)\right\} \backslash\left\{g\left(x^{l}\right)\right\}\right)$. Thus, $h\left(y^{l}\right)=g\left(y^{l}\right)$. Repeating this argument shows that for each $0 \leq k_{0}<k_{1}<\ldots<k_{s} \leq k$ there exists w in the relative interior of $\operatorname{conv}\left(x^{k_{0}}, \ldots, x^{k_{s}}\right)$ such that $h(w)=g(w)$.

We shall now show by induction on $s \geq 1$ that g and h coincide on $\operatorname{conv}\left(x^{k_{0}}\right.$, $\left.\ldots, x^{k_{s}}\right)$. The induction basis is true by Claim 2. Suppose the assertion is true for all $m<s$. Let v and w be points in the relative interior of $\operatorname{conv}\left(x^{k_{0}}, \ldots, x^{k_{s}}\right)$ with $v \neq w$ and $h(w)=g(w)$. Then the straight-line $\ell_{w, v}$ intersects the relative boundary of $\operatorname{conv}\left(x^{k_{0}}, \ldots, x^{k_{s}}\right)$ in two distinct points p and q. By the induction hypothesis g and h coincide on p and q. As $h(w)=g(w)$, we can apply Claim 2 to deduce that $g(v)=h(v)$.

To see that g coincides with h on the whole of Ω_{g} we remark that for $v \in \Omega_{g}$ the straight-line $\ell_{y, v}$ contains at least 3 points of $\operatorname{conv}\left(x^{0}, \ldots, x^{k}\right)$, as y is in the relative interior of $\operatorname{conv}\left(x^{0}, \ldots, x^{k}\right)$. Thus, by Claim $2 g$ coincides with h on Ω_{g}.

It remains to show that $h\left(X^{\prime}\right)=X^{\prime}$. Let $z_{1} \neq z_{2}$ in the relative interior of $\operatorname{conv}\left(x^{0}, \ldots, x^{k}\right)$, and let $a, b \in \partial X^{\prime} \cap \ell_{z_{1}, z_{2}}$ such that z_{1} is between z_{2} and a, and z_{2} is between z_{1} and b. Then $\left[a, z_{1}, z_{2}, b\right]=\left[a^{\prime}, g\left(z_{1}\right), g\left(z_{2}\right), b^{\prime}\right]$, where $a^{\prime}, b^{\prime} \in$ $\partial X^{\prime} \cap \ell_{g\left(z_{1}\right), g\left(z_{2}\right)}$, and $g\left(z_{1}\right)$ is between a^{\prime} and $g\left(z_{2}\right)$. There exists a collineation f that maps a to a^{\prime}, b to b^{\prime}, and z_{1} to $g\left(z_{1}\right)$. As in the proof of Claim $2 g$ coincides with f on $\left[z_{1}, z_{2}\right]$. This implies that h coincides with f on $\ell_{z_{1}, z_{2}} \cap X^{\prime}$, and hence $h(a)=a^{\prime}$ and $h(b)=b^{\prime}$, which completes the proof.

Ideas similar to the ones behind Lemma 3.1 and Proposition 3.2 were used by Edelstein in [9] to analyze nonexpansive mappings on strictly convex Banach spaces.

A key ingredient in the proof of Theorem 1.1 is a result by Y. I. Lyubich and A. I. Veitsblit [20]. To state it we need to recall a few definitions. Let C be a closed cone with non-empty interior in a finite dimensional real vector space W, so C is convex, $\lambda C \subseteq C$ for all $\lambda>0$, and $C \cap(-C)=\{0\}$. A linear map $A: W \rightarrow W$ is said to be positive if $A(C) \subseteq C$. We denote the automorphism group of C by

$$
\operatorname{Aut}(C)=\{A \in \mathrm{GL}(W): A(C)=C\}
$$

A linear subspace U of W is called C-complemented if there exists a positive linear projection $P: W \rightarrow W$ with range U. Note that if U is a subspace of W, then $U \cap C$ is a closed sub-cone of C.

A closed cone C with non-empty interior in W, where $\operatorname{dim} W=n+1$, is called a Lorentz cone if there exists a system of coordinates x_{1}, \ldots, x_{n+1} such that

$$
C=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in W: x_{n+1}^{2}-x_{1}^{2}-\ldots-x_{n}^{2} \geq 0 \text { and } x_{n+1} \geq 0\right\} .
$$

Theorem 2.3 (Lyubich-Veitsblit [20]). If $C \subseteq W$ is a closed cone with nonempty interior, and $\operatorname{Aut}(C)$ contains an infinite compact subgroup, then there exists a 3-dimensional C-complemented subspace U of W such that $K=C \cap U$ is a Lorentz cone in U.

We will now prove Theorem 1.1.
Proof of Theorem 1.1. As before identify X with $\left\{(x, 1) \in \mathbb{R}^{n+1}: x \in X\right\}$ and let $V^{\prime}=\operatorname{aff}\left(\Omega_{g}\right)$ be the affine span of Ω_{g} in \mathbb{R}^{n+1}. Put $X^{\prime}=V^{\prime} \cap X$ and let V be the subspace above V^{\prime} in \mathbb{R}^{n+1}.

Furthermore let C_{X} denote the closure of the open cone generated by X in \mathbb{R}^{n+1}, so

$$
C_{X}=\left\{\lambda(x, 1) \in \mathbb{R}^{n+1}: x \in \bar{X} \text { and } \lambda \geq 0\right\}
$$

Likewise let $C_{X^{\prime}}$ denote the closure of the open cone generated by X^{\prime} in V. Let $x^{*} \in \Omega_{g}$ be a fixed point of g, and note that x^{*} is in the interior of $C_{X^{\prime}}$ in V.

By Proposition 2.2 there exists an $h \in \operatorname{Coll}\left(X^{\prime}\right)$ such that h coincides with g on Ω_{g}. Thus, there exists $A \in \operatorname{Aut}\left(C_{X^{\prime}}\right)$ such that $p A=h$, where p denotes the projection. Remark that, as $h\left(x^{*}\right)=g\left(x^{*}\right)=x^{*}$, we have that $A\left(x^{*}\right)=\sigma x^{*}$ for some $\sigma>0$. Putting $B=\frac{1}{\sigma} A$ we see that $B \in \operatorname{Aut}\left(C_{X^{\prime}}\right), p B=h$ and $B\left(x^{*}\right)=x^{*}$.

As x^{*} in the interior of $C_{X^{\prime}}$ in V, we know that $\left(B^{k}\right)_{k=0}^{\infty}$ is bounded. Indeed, let $\|x\|=\inf \left\{\mu>0:-\mu x^{*} \leq_{C} x \leq_{C} \mu x^{*}\right\}$ be the order unit norm on V, see [22, p.14]. Now let $x \in V$ and $\|x\|=\tau$. Then $-\tau x^{*} \leq_{C} x \leq_{C} \tau x^{*}$, so that

$$
-\tau x^{*}=-\tau B\left(x^{*}\right) \leq_{C} B(x) \leq_{C} \tau B\left(x^{*}\right)=\tau x^{*}
$$

This implies that $\|B\|=1$, and hence $\left(B^{k}\right)_{k=0}^{\infty}$ is bounded. In the same way it can be shown that $\left\|B^{-1}\right\|=1$, and hence the closure of the group generated by $\left(B^{k}\right)_{k=0}^{\infty}$ is a compact subgroup of $\operatorname{Aut}\left(C_{X^{\prime}}\right)$.

As there exists no 2-dimensional plane P in \mathbb{R}^{n} such that $P \cap X$ is the interior of an ellipse, there exists no 3 -dimensional subspace U of \mathbb{R}^{n+1} such that $U \cap C_{X^{\prime}}$ is a Lorentz cone. Hence by the Lyubich-Veitsblit Theorem 2.3 we know that there exists an integer $q \geq 1$ such that $B^{q}=I$.

Now to prove the convergence to periodic orbits, it suffices to show that $|\omega(x ; g)|$ divides q for each $x \in X$, since g is nonexpansive. So, let $x \in X$ and $y \in \omega(y ; g)$. By [8] we know that $\omega(x ; g)=\omega(y ; g)$. As $y \in \Omega_{g}, g^{q}(y)=h^{q}(y)=$ $p B^{q}(y)=y$. Therefore y is a periodic point of g whose period divides q. Thus, $|\omega(x ; g)|=|\omega(y ; g)|$ divides q, and we are done.

The proof of Theorem 1.1 does not use the full strength of the LyubichVeitsblit Theorem 2.3. In fact, I believe that the hypothesis in Theorem 1.1 can be weakened to the assumption: there exists no 3 -dimensional C_{X}-complemented subspace of \mathbb{R}^{n+1} such that $C_{X} \cap U$ is a Lorentz cone. For instance, if $C_{X}=$ $\left\{\left(x_{1}, \ldots, x_{4}\right) \in \mathbb{R}^{4}: x_{4}^{4}-x_{1}^{4}-x_{2}^{4}-x_{3}^{4} \geq 0\right.$ and $\left.x_{4} \geq 0\right\}$, which corresponds to X being the interior of the unit ball in \mathbb{R}^{3} with the ℓ_{4}-norm, then it is known [19] that there exists a 3 -dimensional subspace U such that $C_{X} \cap U$ is a Lorentz cone, but U is not C_{X}-complemented, see [20, Theorem 3]. A more daring speculation would be to conjecture that there is convergence to periodic orbits for general Hilbert's metric spaces not containing a hyperbolic plane.

It must be noted that there exists an analogous result for finite dimensional strictly convex normed spaces, see [15]. In that case one assumes that there exists no 1-complemented Euclidean plane to ensure convergence to periodic orbits.

4. The simplex

It is known [22] that if X is an open n-simplex, then $\left(X, d_{X}\right)$ is isometric to a normed space $\left(\mathbb{R}^{n},\|\cdot\|_{H}\right)$, where $\|\cdot\|_{H}$ has a polyhedral unit ball. As $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric if X and Y are open n-simplices, we can restrict ourselves to analyzing Hilbert's metric on the standard n-simplex,

$$
\Delta_{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i} x_{i}=1 \text { and } x_{i}>0 \text { for } i=1, \ldots, n+1\right\}
$$

In that case it is easy to describe the isometry. Let \mathbb{R}^{n+1} be equipped with an equivalence relation \sim given by, $x \sim y$ if $x=y+\lambda(1, \ldots, 1)$ for some $\lambda \in \mathbb{R}$. Then \mathbb{R}^{n+1} / \sim is an n-dimensional vector space that can be endowed with the variation norm,

$$
\|x\|_{\mathrm{var}}=\max _{1 \leq i \leq n+1} x_{i}-\min _{1 \leq j \leq n+1} x_{j} \quad \text { for } x \in \mathbb{R}^{n+1} / \sim
$$

There exists an isometry of $\left(\Delta_{n}, d_{\Delta_{n}}\right)$ onto $\left(\mathbb{R}^{n+1} / \sim,\|\cdot\|_{\text {var }}\right)$ which is given by,

$$
\log (x)=\left(\log x_{1}, \ldots, \log x_{n+1}\right) \quad \text { for } x \in \Delta_{n}
$$

By taking the representative $x \in \mathbb{R}^{n+1}$ with $x_{n+1}=0$ in the equivalence class of x in \mathbb{R}^{n+1} / \sim, and projecting out the $(n+1)$-th coordinate, we see that $\left(\Delta_{n}, d_{\Delta_{n}}\right)$ is isometric to $\left(\mathbb{R}^{n},\|\cdot\|_{H}\right)$, where

$$
\|z\|_{H}=\left(0 \vee \max _{1 \leq i \leq n} z_{i}\right)-\left(0 \wedge \min _{1 \leq j \leq n} z_{j}\right) \quad \text { for } z \in \mathbb{R}^{n}
$$

Here $a \vee b=\max \{a, b\}$ and $a \wedge b=\min \{a, b\}$. In dimension $n=2$ the unit ball is a hexagon, as shown in Figure 2. For $n=3$ the unit ball is a rhombicdodecahedron.

Figure 2. The unit ball of $\|\cdot\|_{H}$

It is clear that there exists an isometry A on $\left(\mathbb{R}^{n},\|\cdot\|_{H}\right)$ with period 6. Simply take

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

Thus, on $\left(\Delta_{2}, d_{\Delta_{2}}\right)$ there exists a nonexpansive mapping that has a period 6 point. In this section it is shown that 6 is the maximal possible period. The proof uses similar methods as the ones developed in [14].

Let $\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a polyhedral normed space, i.e. it unit ball is a polyhedron. A sequence $x^{1}, \ldots, x^{k} \in \mathbb{R}^{n}$ is called an additive chain if

$$
\left\|x^{1}-x^{k}\right\|=\sum_{i=1}^{k-1}\left\|x^{i}-x^{i+1}\right\|
$$

As $\|\cdot\|$ is a polyhedral norm, $x^{1}, x^{2}, \ldots, x^{k}$ need not lie on a straight-line in order to be an additive chain. For $x, y \in \mathbb{R}^{n}$ define

$$
W(x, y)=\left\{z \in \mathbb{R}^{n}: x, y, z \text { is an additive chain }\right\}
$$

and denote its interior by $W^{\circ}(x, y)$. Given a polyhedral norm on \mathbb{R}^{n} whose unit ball has m facets, i.e. m faces of dimension $n-1$, there exist m linear functionals $\phi_{i}, \ldots, \phi_{m}$ such that

$$
\|x\|=\max _{i=1, \ldots, m}\left\langle\phi_{i}, x\right\rangle \quad \text { for all } x \in \mathbb{R}^{n} .
$$

Let $I(x, y)=\left\{i:\|x-y\|=\phi_{i}(x-y)\right\}$.
LEmMA 4.1. If x^{1}, \ldots, x^{k} is a sequence in a polyhedral normed vector space $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and $\left\|x^{1}-x^{k}\right\|=\phi_{i}\left(x^{1}-x^{k}\right)$, then x^{1}, \ldots, x^{k} is an additive chain if and only if $\left\|x^{j}-x^{j+1}\right\|=\phi_{i}\left(x^{j}-x^{j+1}\right)$ for all $j=1, \ldots, k-1$.

Proof. Clearly

$$
\left\|x^{1}-x^{k}\right\|=\sum_{j=1}^{k-1}\left\|x^{j}-x^{j+1}\right\| \geq \sum_{j=1}^{k-1} \phi_{i}\left(x^{j}-x^{j+1}\right)=\phi_{i}\left(x^{1}-x^{k}\right)=\left\|x^{1}-x^{k}\right\|
$$

Thus, $\phi_{i}\left(x^{j}-x^{j+1}\right)=\left\|x^{j}-x^{j+1}\right\|$ for all $j=1, \ldots, k-1$. Conversely,

$$
\left\|x^{1}-x^{k}\right\| \leq \sum_{j=1}^{k-1}\left\|x^{j}-x^{j+1}\right\|=\sum_{j=1}^{k-1} \phi_{i}\left(x^{j}-x^{j+1}\right)=\phi_{i}\left(x^{1}-x^{k}\right) \leq\left\|x^{1}-x^{k}\right\|
$$

It follows from Lemma 4.1 that $x^{1}, x^{2}, \ldots, x^{k}$ is an additive chain if and only if $\bigcap_{j=1}^{k-1} I\left(x^{j}, x^{j+1}\right) \neq \emptyset$.

Lemma 4.2. For $x \neq y$ in a polyhedral normed vector $\left(\mathbb{R}^{n},\|\cdot\|\right)$ we have that

$$
W^{\circ}(x, y)=\{z \in W(x, y): I(y, z) \subseteq I(x, y)\}
$$

Proof. Suppose that x, y, z is an additive chain and $I(y, z) \nsubseteq I(x, y)$. Let $i \in I(y, z) \backslash I(x, y)$. For $\varepsilon>0$ there exists $z^{\prime} \in \mathbb{R}^{n}$ such that $I\left(y, z^{\prime}\right)=\{i\}$ and $\left\|z^{\prime}-z\right\| \leq \varepsilon$. Note that x, y, z^{\prime} is not an additive chain, as $I(x, y) \cap I\left(y, z^{\prime}\right)=\emptyset$. Hence $z \in \partial W(x, y)$, which shows that

$$
W^{\circ}(x, y) \subseteq\{z \in W(x, y): I(y, z) \subseteq I(x, y)\}
$$

On the other hand, given an additive chain x, y, z, we let

$$
\varepsilon=\min _{i, j} \phi_{i}(y-z)-\phi_{j}(y-z)>0
$$

where the minimum is taken over all $i \in I(y, z)$ and $j \notin I(y, z)$.
For each $z^{\prime} \in \mathbb{R}^{n}$ with $\left\|z-z^{\prime}\right\|<\varepsilon / 2$, we have that $I\left(y, z^{\prime}\right) \subseteq I(y, z)$. Indeed, if $j \notin I(y, z)$ and $i \in I(y, z)$, then
$\phi_{j}\left(y-z^{\prime}\right)=\phi_{j}(y-z)+\phi_{j}\left(z-z^{\prime}\right) \leq \phi_{i}(y-z)+\phi_{j}\left(z-z^{\prime}\right)-\varepsilon<\phi_{i}(y-z)-\varepsilon / 2$

$$
\leq \phi_{i}\left(y-z^{\prime}\right)+\phi_{i}\left(z^{\prime}-z\right)-\varepsilon / 2<\phi_{i}\left(y-z^{\prime}\right)
$$

and hence $j \notin I\left(y, z^{\prime}\right)$.
As $I(y, z) \subseteq I(x, y)$, we know that $I\left(y, z^{\prime}\right) \subseteq I(x, y)$. This implies that $I\left(y, z^{\prime}\right) \cap I(x, y)$ is non-empty, and hence x, y, z^{\prime} is an additive chain.

Recall that if $\mathcal{O}=\left\{\xi, g(\xi), \ldots, g^{p-1}(\xi)\right\}$ is a periodic orbit of a nonexpansive mapping g on a metric space (Y, d), then the iterates $\Gamma=\left\{g^{k}: k=0, \ldots p-\right.$ $1\}$ form a cyclic group of isometries on \mathcal{O} that acts transitively on \mathcal{O}, i.e. for each $x, y \in \mathcal{O}$ there exists $g^{k} \in \Gamma$ such that $g^{k}(x)=y$. The following lemma generalizes [14, Lemma 2.2].

Lemma 4.3. If S is a compact set in a polyhedral normed space $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and S has a transitive commutative group of isometries, then

$$
W^{\circ}(x, y) \cap S=\emptyset \quad \text { for all } x \neq y \in S
$$

Proof. Let $x, y, z \in S$ be such that $x \neq y$ and $z \in W^{\circ}(x, y)$. Put $\varepsilon=$ $\min \{\|x-y\|,\|y-z\|\}>0$. Denote the collection of all additive chains in S starting with x, y, z and which are such that the distance between consecutive points in the chain is at least ε by \mathcal{F}.

Note that, since S is compact, there exists an upper bound on the length of the additive chains in \mathcal{F}. Let $x^{1}=x, x^{2}=y, x^{3}=z, \ldots, x^{r}$ be an additive chain in \mathcal{F} of maximal length.

For $1 \leq k, l \leq r$ let $g_{k, l}$ be an isometry on S in the commutative group that acts transitively on S such that $g_{k, l}\left(x^{k}\right)=x^{l}$. Denote $x^{r+1}=g_{1,2}\left(x^{r}\right)$. We now
show that $x^{2}, x^{3}, \ldots, x^{r+1}$ is also an additive chain in S in which the distance between consecutive points is at least ε. Indeed, as the group is commutative,

$$
\left\|x^{r}-x^{r+1}\right\|=\left\|g_{1, r}\left(x^{1}\right)-g_{1, r}\left(g_{1,2}\left(x^{1}\right)\right)\right\|=\left\|x^{1}-x^{2}\right\| \geq \varepsilon
$$

This equality implies,

$$
\left\|x^{2}-x^{r+1}\right\|=\left\|g_{1,2}\left(x^{1}\right)-g_{1,2}\left(x^{r}\right)\right\|=\sum_{j=1}^{r-1}\left\|x^{j}-x^{j+1}\right\|=\sum_{j=2}^{r}\left\|x^{j}-x^{j+1}\right\|
$$

and hence $\bigcap_{j=2}^{r} I\left(x^{j}, x^{j+1}\right) \neq \emptyset$. As $z \in W^{\circ}(x, y)$, we know that $I\left(x^{2}, x^{3}\right) \subseteq$ $I\left(x^{1}, x^{2}\right)$, and hence $\bigcap_{j=1}^{r} I\left(x^{j}, x^{j+1}\right) \neq \emptyset$. But this implies that x^{1}, \ldots, x^{r+1} is an additive chain in \mathcal{F}, which contradicts the maximality of r.

We can now prove Theorem 1.2.
Proof of Theorem 1.2. If g is a nonexpansive mapping on $\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)$ with a periodic orbit \mathcal{O} and fixed point x^{*}, then \mathcal{O} is contained in the boundary of the ball $B\left(x^{*}\right)=\left\{x \in \mathbb{R}^{2}:\left\|x-x^{*}\right\|_{H} \leq R\right\}$ for some $R \geq 0$. Without loss of generality we may assume that $x^{*}=0$.

Partition $\partial B\left(x^{*}\right)$ as follows:

$$
\begin{aligned}
& A_{1}=\left\{x \in \mathbb{R}^{2}: x_{1}=R \text { and } 0 \leq x_{2}<R\right\}, \\
& A_{2}=\left\{x \in \mathbb{R}^{2}: x_{2}=R \text { and } 0<x_{1} \leq R\right\}, \\
& A_{3}=\left\{x \in \mathbb{R}^{2}: x_{2}-x_{1}=R \text { and } 0<x_{2}<R\right\}, \\
& A_{4}=\left\{x \in \mathbb{R}^{2}: x_{1}=-R \text { and }-R<x_{2} \leq 0\right\}, \\
& A_{5}=\left\{x \in \mathbb{R}^{2}: x_{2}=-R \text { and }-R \leq x_{1}<0\right\}, \\
& A_{6}=\left\{x \in \mathbb{R}^{2}: x_{1}-x_{2}=R \text { and }-R \leq x_{2}<0\right\} .
\end{aligned}
$$

Each A_{i} corresponds to a facet of $\partial B\left(x^{*}\right)$ with one of its vertices removed.
By Lemma 4.3 each A_{i} can contain at most two points of \mathcal{O}, see also Figure 2. Moreover, if A_{i} contains 2 points of \mathcal{O}, then $A_{i+1} \cap \mathcal{O}$ is empty. (Here we are counting modulo 6.) Indeed, if ϕ_{i} denotes the facet defining functional of $\partial B\left(x^{*}\right)$ corresponding to A_{i}, then it is easy to verify that if $x \neq y$ in A_{i}, then $I(x, y)=\{i+1, i+2\}$, so that $W^{\circ}(x, y) \supseteq A_{i+1}$. Thus, $A_{i+1} \cap \mathcal{O}$ is empty, if $x \neq y$ in $A_{i} \cap \mathcal{O}$, and hence \mathcal{O} has at most 6 points.

The example of a period 6 orbit of a nonexpansive mapping on Δ_{2} can be generalized to Δ_{n}. To do this it is convenient to work in $\left(\mathbb{R}^{n+1} / \sim,\|\cdot\|_{\text {var }}\right)$. Let \mathcal{X} be the subset of all points $x \in \mathbb{R}^{n+1} / \sim$ such that $x_{i}=1$ or $x_{i}=0$ for each i. Note that $(0, \ldots, 0)=(1, \ldots, 1)$ and that for each $x \in \mathcal{X}$ we have $-x=(1, \ldots, 1)-x \in \mathcal{X}$. If $\mathcal{S} \subseteq \mathcal{X}$ is such that there exists no $x \neq y$ in \mathcal{S} with $x \leq y$, where the inequality holds coordinate-wise, then $\|x-y\|_{\text {var }}=2$ for all $x \neq y$ in S. For such sets \mathcal{S} it is known [16, p. 867] that there exists
a nonexpansive mapping $g_{\mathcal{S}}$ on \mathbb{R}^{n+1} / \sim which has \mathcal{S} as a periodic orbit. Now suppose that n is even and let $\mathcal{S}_{n} \subseteq \mathcal{X}$ be the set of points with exactly $n / 2$ coordinates equal to 1 . Then $-\mathcal{S}_{n}$ is the set of points with exactly $n / 2+1$ coordinates equal to 1 in \mathcal{X}. Clearly the reflection in the origin, $R(x)=-x$, is an isometry on \mathbb{R}^{n+1} / \sim. Now if $\left|\mathcal{S}_{n}\right|=\binom{n+1}{n / 2}$ is odd, the nonexpansive mapping $R \circ g_{\mathcal{S}_{n}}$ has a periodic orbit of length $2\binom{n+1}{n / 2}$. For $n=2$, this gives a period 6 orbit Δ_{2}. On the other hand, if $\binom{n+1}{n / 2}$ is even, we can drop one point of \mathcal{S}_{n} and obtain a periodic orbit of length $2\binom{n+1}{n / 2}-2$. A similar construction exists for n odd. This shows, for general n, that there exists a nonexpansive mapping on $\left(\Delta_{n}, d_{\Delta_{n}}\right)$ that has a periodic point with period

$$
2\binom{n+1}{\lfloor n / 2\rfloor}-2 \delta_{n}
$$

where $\delta_{n}=1$ if $\binom{n+1}{\lfloor n / 2\rfloor}$ is even and $\delta_{n}=0$ otherwise. It seems unlikely that this lower bound is optimal, but no better examples are known.

References

[1] J. C. Álvarez Paiva, Hilbert's fourth problem in two dimensions, MASS selecta: teaching and learning advanced undergraduate mathematics (Svetlana Katok et al., eds.), Amer. Math. Soc., Providence, RI, 2003, pp. 165-183.
[2] A. F. Beardon, The dynamics of contractions, Ergodic Theory Dynam. Systems 17 (1997), 1257-1266.
[3] G. Birkhoff, Extensions of Jentzsch's theorems, Trans. Amer. Math. Soc. 85 (1957), 219-277.
[4] H. Busemann, The Geometry of Geodesics Pure and Applied Mathematics, vol. 6, Academic Press, New York, 1955.
[5] P. Bushell, Hilbert's metric and positive contraction mappings in Banach space, Arch. Rational Mech. Anal. 52 (1973), 330-338.
[6] A. Calka, On conditions under which isometries have bounded orbits, Colloq. Math. 48 (1984), 219-227.
[7] J. Cochet-Terrasson and S. Gaubert, A policy iteration algorithm for zero-sum stochastic games with mean payoff, C. R. Math. Acad. Sci. Paris 343 (2006), 377-382.
[8] C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Funct. Anal. 13 (1973), 97-106.
[9] M. Edelstein, On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964), 439-447.
[10] H. Freundenthal and W. Hurewicz, Dehnungen, verkürzungen und isometrien, Fundamenta Math. 26 (1936), 120-122.
[11] D. Hilbert, Über die gerade linie als kürzeste verbindung zweier punkte, Math. Ann. 46 (1895), 91-96.
[12] A. Karlsson, Non-expanding maps and Busemann functions, Ergodic Theory Dynam. Systems 21 (2001), 1447-1457.
[13] A. Karlsson and G. A. Noskov, The Hilbert metric and Gromov hyperbolicity, Enseign. Math. 48 (2002), 73-89.
[14] B. Lemmens, R. D. Nussbaum and S. M. Verduyn Lunel, Lower and upper bounds for ω-limit sets of nonexpansive maps, Indag. Math. New Ser. 12 (2001), 191-211.
[15] B. Lemmens and O. van Gaans, Dynamics of non-expansive maps on strictly convex Banach spaces, Israel J. Math. 171 (2009), 425-442.
[16] B. Lemmens and M. Scheutzow, On the dynamics of sup-norm nonexpansive maps, Ergodic Theory Dynam. Syst. 25 (2005), 861-871.
[17] B. Lins, A Denjoy-Wolff theorem for Hilbert metric nonexpansive maps on polyhedral domains, Math. Proc. Cambridge Philos. Soc. 143 (2007), 157-164.
[18] B. Lins and R. Nussbaum, Denjoy-Wolff theorems, Hilbert metric nonexpansive maps and reproduction-decimation operators, J. Funct. Anal. 254 (2008), 2365-2386.
[19] Y. I. Lyubich and L. N. Vaserstein, Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), 327-362.
[20] Yu. I. Lyubich and A. I. Veitsblit, Boundary spectrum of nonnegative operators, Siberian Math. J. 26 (1985), 798-802.
[21] V. Metz, Hilbert's projective metric on cones of Dirichlet forms, J. Funct. Anal. 127 (1995), 438-455.
[22] R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988), 1-137.
[22] Omega limit sets of nonexpansive maps: finiteness and cardinality estimates, Differential Integral Equations 3 (1990), 523-540.
[23] , Entropy minimization, Hilbert's projective metric, and scaling integral kernels,, J. Funct. Anal. 115 (1993), 45-99.
[24] , Fixed point theorems and Denjoy-Wolff theorems for Hilbert's projective metric in infinite dimensions, Topol. Methods Nonlinear Anal. 29 (2007), 199-249.
[25] D. Rosenberg and S. Sorin, An operator approach to zero-sum repeated games, Israel J. Math. 121 (2001), 221-246.
[26] H. Samelson, On the Perron-Frobenius theorem, Michigan Math. J. 4 (1957), 57-59.
[27] D. Weller, Hilbert's metric, part metric and selfmappings of a cone, Ph.D. dissertation (1987), Univ. of Bremen, Germany, December.

Bas Lemmens
SMSAS
University of Kent
Canterbury, CT2 7NF, UNITED KINGDOM
E-mail address: B.Lemmens@kent.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary 47H09, 47H07; Secondary 54H20.
 Key words and phrases. Nonexpansive mappings, Hilbert's metric, periodic orbits, hyperbolic plane, simplices, nonlinear mappings on cones.

