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Summary. In this paper several recent results concerning the dynamics of order
preserving (sub)homogeneous maps on polyhedral cones are reviewed. These re-
sults were obtained by the author in collaboration with Marianne Akian, Stéphane
Gaubert, Roger Nussbaum, Michael Scheutzow and Colin Sparrow in [2], [13] and
[15], and are new nonlinear extensions of the Perron-Frobenius theory.

1 The classical Perron-Frobenius theorem

To start this review it is convenient to first recall the classical Perron-
Frobenius theorem, which can be stated as follows (cf. [5]).

Theorem 1 (Perron-Frobenius). If A is a nonnegative irreducible n × n
matrix, then the following assertions hold:

(i) The spectral radius, ρ(A), is a simple eigenvalue of A and the correspond-
ing eigenvector is unique (up to scaling) and positive.

(ii) If, in addition, A has exactly q distinct eigenvalues λ such that |λ| =
ρ(A), then these eigenvalues are; ρ(A)e2πk/q for k = 0, . . . , q − 1.

The Perron-Frobenius theorem has the following consequence (cf. [19]) for the
dynamical behavior of linear maps on the standard positive cone,

R
n
+ = {x ∈ R

n: xi ≥ 0 for all 1 ≤ i ≤ n}.

Recall that a point x ∈ X is a periodic point of a map f : X → X if there
exists an integer p ≥ 1 such that fp(x) = x and the minimal such p is called
the period of x under f .

Corollary 1. If A: Rn
+ → R

n
+ is a linear map, then there exists an integer

p ≥ 1 such that for each x ∈ R
n
+ with (‖Akx‖)k bounded, limk→∞ Akpx = ξx,

where ξx is a periodic point of A whose period divides p. Moreover, p is the
order of a permutation on n letters.
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In other words, each bounded orbit of A in the standard positive cone con-
verges to a periodic orbit of A whose period divides the order of a permutation
on n letters.

It is well known that the first assertion in the Perron-Frobenius theorem
can be generalized to linear maps that leave a cone in R

n invariant (see [5]
or [12]). However, to generalize the second assertion one needs the cone to
be polyhedral, i.e., it has finitely many extremal rays (see [12]). Indeed, if we
consider the Lorentz cone, L3 = {x ∈ R

3: x2
1 + x2

2 ≤ x2
3 with x3 ≥ 0}, and

A =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 ,

then A leaves L3 invariant and the spectrum of A is {1, e±θi}. If θ is an
irrational multiple of 2π, then eθi is not a root of unity and hence the second
assertion of the Perron-Frobenius theorem does not hold. Moreover, in that
case, all orbits of A in L3 are bounded, but most of them do not converge to
periodic orbits.

In [2], [13] and [15] we were particularly interested in finding nonlin-
ear generalizations of the Perron-Frobenius theorem for order preserving
(sub)homogeneous maps on polyhedral cones. Such maps arise in a variety
of applications, including optimal control and game theory [1, 20], computer
science [4], mathematical biology [12, 21] and in the analysis of discrete event
systems [3, 8]. Their eigenvectors and dynamical behavior have been investi-
gated in numerous papers, see for instance [1, 7, 9, 10, 11, 16, 17, 18, 22, 24]
and the references therein. In connection with Perron-Frobenius theory the
following questions are particularly interesting. When does an order preserv-
ing (sub)homogeneous map have an eigenvector in the interior of the cone
and when it is unique? Does every bounded orbit of an order preserving
(sub)homogeneous map on a polyhedral cone converge to a periodic orbit
and, if so, what are the possible periods? Our results provide a detailed an-
swer for the second question. Before stating the results precisely we first recall
several basic definitions.

2 Basic definitions and examples

A cone K ⊆ R
n is a convex subset of R

n such that λK ⊆ K for all λ ≥ 0 and
K∩(−K) = {0}. It is said to be a closed cone if it is a closed subset of R

n. The
interior and boundary of a cone K are denoted by K◦ and ∂K, respectively.
A closed cone K ⊆ R

n is called polyhedral if there exist finitely many linear
functionals, φ1, . . . , φm such that K = {x ∈ R

n: φi(x) ≥ 0 for all 1 ≤ i ≤ m}.
A face of a polyhedral cone K is any set of the form F = K∩{x ∈ R

n: φ(x) =
0}, where φ is a linear functional on R

n such that K ⊆ {x ∈ R
n: φ(x) ≥ 0}. A

face is called a facet if dim(F ), the dimension of the linear span of F , is equal
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to dim(K)−1. For instance, the standard positive cone, R
n
+, has 2n faces and

n facets.
A cone K ⊂ R

n induces a partial ordering ≤ on R
n by, x ≤ y if y−x ∈ K.

We call a map f : K → K order preserving if f(x) ≤ f(y) whenever x ≤ y. A
map f : K → K is said to be subhomogeneous if λf(x) ≤ f(λx) for all x ∈ K
and 0 ≤ λ ≤ 1. It is called homogeneous if λf(x) = f(λx) for all x ∈ K and
λ ≥ 0.

There are many examples of order preserving (sub)homogeneous maps.
Consider, for instance, an affine map f : Rn

+ → R
n
+ given by, f(x) = Ax+ b for

x ∈ R
n
+, where A is a nonnegative matrix and b ∈ R

n
+. It is easy to verify that

such affine maps are order preserving and subhomogenous. Other important
examples are so called min-max maps. Before defining these maps it is useful
to introduce the following notation: a ∨ b = max{a, b} and a ∧ b = min{a, b}
for a, b ∈ R. A min-max map is map f : Rn

+ → R
n
+ of the form

fi(x) =
∨

1≤j≤m

∧

k∈Ij

ai
jkxk for 1 ≤ i ≤ n and x ∈ R

n
+,

where Ij ⊆ {1, . . . , n} and each ai
jk > 0. (Here the integer m and the sets

Ij may be different for different i.) Other examples are maps f : Rn
+ → R

n
+

given by f(x) = supP∈P Px for x ∈ R
n
+, where P is a collection of non-

negative matrices and the supremum is taken coordinate-wise. Another rich
source of examples is provided by order preserving additively homogeneous
maps, where the ordering is induced by R

n
+. Recall that a map g: Rn → R

n

is additively homogeneous if g(x + λ1) = g(x) + λ1 for all x ∈ R
n and λ ∈ R.

(Here 1 denotes the vector with each coordinate unity.) These maps become,
after a transformation, order preserving and homogenous on (Rn

+)◦. Indeed,
if g: Rn → R

n is an order preserving additively homogeneous map, then we
can consider the map f : (Rn

+)◦ → (Rn
+)◦ given by

f(x) = (exp ◦ g ◦ log)(x) for x ∈ (Rn
+)◦,

where log(z) = (log z1, . . . , log zn) and exp(z) = (ez1 , . . . , ezn) for all z. It
is easy to verify that f preserves the ordering induced by R

n
+ and f is ho-

mogeneous. Maps that are order preserving and additively homogeneous arise
frequently in the analysis of discrete event systems, see [3] and [8], and include
max-plus maps and min-max-plus maps.

3 Non-expansiveness and Thompson’s metric

It is known that order preserving (sub)homogeneous maps are non-expansive
with respect to Thompson’s metric. Before defining this metric we first in-
troduce the notion of a part of the cone. The partial ordering ≤ yields an
equivalence relation ∼ on K by, x ∼ y if there exist 0 < α ≤ β such that
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αx ≤ y ≤ βx. The equivalence classes are called parts of the cone and the
set of all parts of K is denoted by P(K). It can be shown (see [2]) that if K
is a polyhedral cone with N facets, then |P(K)| ≤ 2N . In particular, R

n
+ has

exactly 2n parts, which are given by

PI = {x ∈ R
n
+: xi > 0 for all i ∈ I and xi = 0 otherwise} for I ⊆ {1, . . . , n}.

Now for x, y ∈ K we define M(x/y) = inf{β > 0: x ≤ βy} and we put
M(x/y) = ∞ if the set is empty. By using the function M(x/y) one can
define Thompson’s metric, dT : K×K → [0,∞], on a closed cone K as follows;

dT (x, y) = log(M(x/y) ∨ M(y/x))

for all (x, y) ∈ K × K with (x, y) 6= (0, 0) and dT (0, 0) = 0. It is not hard
to show that dT is a genuine metric on each part of the closed cone and
dT (x, y) < ∞ if and only if x ∼ y. Moreover, if P is a part of a closed cone in
R

n, then (P, dT ) is a complete metric space and the topology coincides with
the norm topology (see [17] or [23]).

Recall that f : K → K is called non-expansive under dT if

dT (f(x), f(y)) ≤ dT (x, y) for all x, y ∈ K.

The following lemma shows that order preserving subhomogeneous maps are
non-expansive under dT (cf. [2, Lemma 3.3]).

Lemma 1. Let K be a closed cone in R
n. If f : K → K is order preserving,

then f is non-expansive under dT if and only if f is subhomogeneous.

Proof. Suppose that f is subhomogeneous. Let x, y ∈ K and assume that λ =
max{M(y/x), M(x/y)}. Then y ≤ λx and x ≤ λy. This implies that x ≤ λy ≤
λ2x and hence λ ≥ 1. As f is order preserving and subhomogeneous, we deduce
that λ−1f(y) ≤ f(λ−1y) ≤ f(x) and λ−1f(x) ≤ f(λ−1x) ≤ f(y). Therefore
max{M(f(y)/f(x)), M(f(x)/f(y))} ≤ λ and hence dT (f(x), f(y)) ≤ log λ =
dT (x, y).

Now suppose that f is nonexpansive with respect to dT on K. Let x ∈ K
and put y = λ−1x, where λ ≥ 1. Clearly dT (x, y) = log λ if x 6= 0 and
dT (x, y) ≤ log λ if x = 0. As f is nonexpansive with respect to dT , we de-
duce that log M(f(x)/f(y)) ≤ dT (f(x), f(y)) ≤ dT (x, y) ≤ log λ, so that
f(x) ≤ λf(y). This implies that λ−1f(x) ≤ f(y) = f(λ−1x) and hence f is
subhomogeneous.

There exists a close relation between Thompson’s metric and the sup-norm
on R

n given by ‖z‖∞ = maxi |zi| for z ∈ R
n. Indeed, if we let K = R

n
+ and

x, y ∈ (Rn
+)◦, then

M(x/y) = inf{β > 0: x ≤ βy} = max{xi/yi: 1 ≤ i ≤ n},

so that log M(x/y) = maxi(log xi − log yi). As ‖z‖∞ = (maxi zi)∨ (maxi −zi)
for all z ∈ R

n, we find that log: (Rn
+)◦ → R

n is an isometry from ((Rn
+)◦, dT )
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onto (Rn, ‖ · ‖∞). Thus, if f : (Rn
+)◦ → (Rn

+)◦ is an order preserving subho-
mogenous map, where the ordering is induced by R

n
+, then g: Rn → R

n given
by g = log ◦f ◦ exp, is a sup-norm non-expansive map that has the same
dynamical properties as f . In case K is a polyhedral cone with nonempty
interior and N facets, we can use the facet defining functionals to construct
an isometric embedding of (K◦, dT ) into (RN , ‖ · ‖∞) (see [2, Section 4]).

The dynamics of sup-norm non-expansive maps is fairly well understood.
In fact, there exists the following theorem.

Theorem 2. If f : X → X, where X ⊆ R
n is closed, is a sup-norm non-

expansive map and there exists z ∈ X such that (‖f k(z)‖∞)k is bounded, then
for each x ∈ X there exist an integer p ≥ 1 and a periodic point ξx ∈ X
of f with period p such that (fkp(x))k converges to ξx and p does not exceed
maxk 2k

(

n
k

)

.

The first statement in Theorem 2 was proved by Weller [24]. The estimate
for p was obtained by the author and Michael Scheutzow in [13]. It has been
conjectured by Nussbaum [18] that the optimal upper bound for p in Theorem
2 is 2n. At present this conjecture is know to be true for 1 ≤ n ≤ 3. The
estimate in Theorem 2 is smaller than C3n/

√
n and is currently the strongest

estimate. Evidence supporting Nussbaum’s conjecture is given in [14].
As order preserving subhomogenous maps on the interior of a polyhedral

cone have the same dynamical properties as sup-norm non-expansive maps,
Theorem 2 has the following consequence. If f : K → K is an order preserving
subhomogeneous map on a polyhedral cone, with nonempty interior and N
facets, and there exists z ∈ K◦ whose orbit has a compact closure in K◦,
then the orbit of each x ∈ K◦ converges to a periodic orbit of f in K◦ and
its period is at most maxk 2k

(

N
k

)

. This consequence only concerns a special
situation. It does, for instance, not provide any information about orbits in
K◦ that are bounded but have limit points at ∂K or orbits that are contained
in ∂K. In the next section a more complete picture of the possible dynamics
is given.

4 Nonlinear Perron-Frobenius theorems

We start by discussing the periodic orbits in the interior of the cone in more
detail. As order preserving subhomogenous maps on polyhedral cones are more
constrained than sup-norm non-expansive maps, one may expect to obtain a
stronger estimate for the periods of periodic orbits in K◦. In fact, there exists
the following result from [13], which confirmed a conjecture of Gunawardena
and Sparrow [8].

Theorem 3. If f : (Rn
+)◦ → (Rn

+)◦ is an order preserving homogeneous map,
where the ordering is induced by R

n
+, then the period of each periodic point of

f does not exceed
(

n
bn/2c

)

.



6 Bas Lemmens

It is known that the upper bound in Theorem 3 is sharp (see [8]). The main
idea of the proof of Theorem 3 can be summarized as follows. Let O ⊂ (Rn

+)◦

be a periodic orbit of an order preserving homogeneous map f . An ordered
pair (x, y) ∈ O×O, with x 6= y, is called an extreme pair in O if there exists no
z ∈ O with x 6= z 6= y such that either log M(z/y) = log M(z/x)+logM(x/y)
or log M(x/z) = log M(x/y) + log M(y/z). By using the extreme pairs, a
coding function c:O → 2{1,...,n} can be defined as follows: i ∈ c(x) if and only
if there exists y ∈ O such that (x, y) an extreme pair in O and M(x/y) = xi/yi.
It can be shown that c is injective and that c(O) is an anti-chain in the partially
ordered set (2{1,...,n},⊆), i.e., there exist no A, B ∈ c(O) such that A ⊆ B
and A 6= B. As such anti-chains have at most

(

n
bn/2c

)

elements by Sperner’s

Theorem [6, §3], the conclusion of Theorem 3 follows.
Theorem 4 has a generalization to order preserving subhomogeneous maps

on polyhedral cones (cf. [2, Theorem 4.2]).

Theorem 4. Let K be a polyhedral cone in R
n with nonempty interior and

N facets. If f : K◦ → K◦ is an order preserving and subhomogeneous map,
where the ordering is induced by K, then the period of each periodic point of
f does not exceed

(

N
bN/2c

)

.

Let us now consider bounded orbits of order preserving subhomogeneous
maps in the whole polyhedral cone. Since points in different parts of the cone
are at infinite distance from each other in Thompson’s metric, we can not rely
on non-expansiveness only. Nevertheless one can still show that every bounded
orbit converges to a periodic orbit (see [2]). In fact, the following theorem is
true.

Theorem 5. Let K be a polyhedral cone with N facets in R
n. If f : K → K

is a continuous order preserving subhomogeneous map and the orbit of x ∈ K
is bounded, then there exists a periodic point ξx of f , with period p, such that
(fkp(x))k converges to ξx. Moreover, there exist an integer 1 ≤ m ≤ N such
that p = q1q2 for some integers 1 ≤ q1 ≤

(

N
m

)

and 1 ≤ q2 ≤
(

m
bm/2c

)

.

It follows from Theorem 5 that the period of each periodic point of an or-
der preserving subhomogeneous map on a polyhedral cone with N facets is
bounded by

βN = max
1≤m≤N

(

N

m

)(

m

bm/2c

)

=
N !

bN
3
c!bN+1

3
c!bN+2

3
c!

∼ 3N+1
√

3

2πN
.

The intuition behind this bound can be explained as follows. To begin we
remark that, as f is non-expansive under dT , x ∼ y implies that f(x) ∼ f(y).
Therefore f has to map parts into parts. This is a severe constraint on the
periodic orbits in the boundary of the cone. For instance, in Figure 1 below
two period 6 orbits in the boundary of R

3
+ are depicted, but only the right one

may occur as a periodic orbit of an order preserving subhomogeneous map on
R

3
+. This observation allows us to define a quotient map F :P(K) → P(K)
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Fig. 1. Period 6 orbits in R
3
+

by F ([x]) = [f(x)], where [x] denotes the equivalence class (the part of) x in
K. On P(K) we also have a partial ordering � given by, P � Q if there exist
x ∈ P and y ∈ Q such that x ≤ βy for some β > 0. It is not hard to show
that F preserves the ordering � on P(K), since f is order preserving and
subhomogeneous. Now, if x ∈ K is a periodic point of f with period p, then
[x] is a periodic point of F with period say q1. Moreover, each part in the orbit
of [x] under F contains the same number of points of the orbit of x, say q2.
Thus, we can write p = q1q2, where q1 is the number of parts visited by the
orbit of x and q2 is the number of points of the orbit in each of these parts.
Only a limited number of parts can be visited by the orbit of x, since the orbit
of [x] under F is an anti-chain in the partially ordered set (P(K),�). On the
other hand, the smallest dimension among the parts visited by the periodic
orbit limits the number of points of the orbit contained in each part. Using
these observations one can prove the existence of an integer 1 ≤ m ≤ N such
that 1 ≤ q1 ≤

(

N
m

)

and 1 ≤ q2 ≤
(

m
bm/2c

)

.

Knowing Theorem 5 it is natural to define for a polyhedral cone K the
set Γ (K) as the set of all possible periods of periodic points of continuous,
order preserving, subhomogeneous map f : K → K. It follows from Theorem
5 that if K has N facets, then Γ (K) is contained in the set B(N) consisting
of those p ≥ 1 for which there exist integers q1 and q2 such that p = q1q2,
1 ≤ q1 ≤

(

N
m

)

, and 1 ≤ q2 ≤
(

m
bm/2c

)

for some 1 ≤ m ≤ N . In particular, we

find that Γ (Rn
+) ⊆ B(n). It is natural to ask if we can completely determine

the set Γ (Rn
+) for each n ≥ 1 and, in particular, if Γ (Rn

+) = B(n). The next
result from [15] says that the last equality does indeed hold.

Theorem 6. For each n ≥ 1, Γ (Rn
+) = B(n).

It turns out that for each p ∈ B(n) a min-max map f : Rn
+ → R

n
+ can be

constructed which has a periodic point with period p. For instance, the min-
max map f : R3

+ → R
3
+ given by

f





x1

x2

x3



 =





(3x1 ∧ x2) ∨ (3x2 ∧ x3)
(3x1 ∧ x3) ∨ (x2 ∧ 3x3)
(x1 ∧ 3x2) ∨ (x1 ∧ 3x3)
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has the point (1, 2, 0) as a period 6 point. We conclude the review with a small
table listing the elements of B(n) for 1 ≤ n ≤ 5.

B(n)

1
1,2

1,2,3,4,6
1,2,3,4,5,6,8,9,12

1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,30
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