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Abstract

We study properties of collective action problems bounded by minimal contribu-

tions as well as endowment and variable contributions are neighbourhood dependent.

We relate nearness to non-interior agents and its implication for interior contribu-

tion. Here, we see the aspects of node distance to non-interior agents which have

implications for interior agents. Endowments may be redistributed among agents.

We highlight strict conditions for budget-balanced transfers for which neighbour-

hood contributions and individual residual consumption are invariant. Agents may

or may not be concerned about neighbourhood outcomes. We find that welfare is

self-correcting and neither cases are relevant to the overall welfare impact of neutral

transfers.
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1 Introduction

The study of public good provision through contribution from private agents is impor-

tant in that they provide us with roadmaps in which regulatory and distributive policies

can be used to achieve optimal outcomes. In recent times there has been increased focus

on strategic interactions between agents involved in actions that may lead to a collec-

tive benefit. We see a representation of this behaviour in the model to which economic

agents make trade off decisions between private consumption and public good provision

as introduced in the seminal work of Bergstrom, Blume, and Varian (1986). Such a prob-

lem has since then, been further analysed from a unique network of social interactions

mainly by Allouch (2015). Hence, interactions are then linked directly to neighbourhood

interactions such that agents only benefit directly from local public good provision (neigh-

bourhood collective effort). This idea implicitly defines agents preference as those arising

ultimately from neighbourhood contribution and private consumption. Hence, the direct

benefit arises from the basic need to achieve a certain level of neighbourhood provision

alone. The product is an equilibrium arising from substitution relationship1 with generic

public good characteristics such as free riding and active contribution.

For this work, we explore properties of a collective action game where actions of

economic agents represent contributions to a local(neighbourhood) public good23, as is

similarly found within the framework of Bergstrom et al. (1986). However, modify as-

pects of the contribution so that the total contribution of each agent is made up of

a fixed element4 and the variable portion implying the amount that varies according

on their mean-neighbours contributions. The utilisation of mean-neighbours as well as

mean-neighbourhood contribution can be traced to the payoff introduced in the article by

Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) where the Example 3 maps

the payoff of an agent to its neighbours average action. As such, we specify a best reply

which is a game of strategic compliment and as such, contributions are a positive function

1Games with linear best replies that reveal strategic substitution are as well discussed in Bramoullé
and Kranton (2007) and/or Bramoullé, Kranton, and D’amours (2014).

2The neighbourhood of an agent is defined as a group made up strictly of an agent and his neighbours,
i.e, all those the agent is directly connected to.

3The term Public Good for this paper is the aggregate neighbourhood contribution.
4That is the portion which is independent of the contributions of other agents.
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the mean-neighbours contributions. A quality of this best reply is that it is indicative of

a system where an agents’ payoff may or may not be a function of their neighbourhood

public good. Primarily, the indirect utility function reveals agents who are interested in

making contributions that exceed the agents’ mean-neighbours contribution. A reason for

this might be linked to higher-order preferences in which issues to do with reputation, pres-

tige, and other needs which transcend simply achieving the required overall contributions.

Strategic behaviors arising from the game are complementary in nature. A characteristic

that is less common among works on private contributions to a public good. Nash equilib-

rium is uniquely defined under Ballester, Calvó-Armengol, and Zenou (2006) and a simple

algorithm for computation are shown.

We discuss qualities of interconnections for which close attention is given to the nearness

of an agent to less-endowed agents and its implications for potentially wealthy agents.

We observe the importance of network concepts including shortest paths on the overall

contribution an agent makes given the presence of non-interior agents. One major part

we find here is that being close to a non-interior agent, though relevant, becomes more

useful depending on the neighbourhood population of each agent within the pathway to the

non-interior agents. In doing this, we explore the role of contagion through an undirected

network as a different way to analyse peer effect in networks. The flow, to an extent, may

be likened to the fictitious default sequence (as in Eisenberg and Noe (2001)) except for

several divergences which include the movement of default which may or may not result

in cyclical defaults.

In the last part, we pay brief attention to redistributive policies. We distinguish equi-

librium contribution into rich agents, (whose equilibrium contributions are interior to their

endowment), and poor agents who contribute their full endowment. As such, we observe

the impact of wealth transfer among rich agents as well as conditions for the famed transfer

neutrality as in Bergstrom et al. (1986) to hold. with utilitarian welfare, We then go fur-

ther to access the impact of neutral transfers among rich agents on overall welfare. Agents

whose wealth is constant given a transfer policy face no change in their payoff. Also, we

find that neutral policies achieve the same overall welfare regardless of the fact agents may

or may benefit directly from neighbourhood contributions. Lastly, we describe conditions

for welfare improvement due to neutral pairwise transfers when private consumption is
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also beneficial to agents.

1.1 Related Literature

As described earlier, our model builds on specifically from the Bergstrom et al. (1986)

framework which has been well studied within the economic network framework in works

including Allouch (2015), Allouch and King (2021), Allouch (2017), Allouch and King

(2018) (for substitute game with upper limits), Bourlès, Bramoullé, and Perez-Richet

(2017)(where agents care about the payoff of neighbours), etc. Also, well linked to our

best replies are those that may arise from contribution games as introduced mildly in

Galeotti et al. (2010). Games of strategic complements in undirected networks include

Belhaj, Bervoets, and Deröıan (2016), Belhaj and Deröıan (2019), Belhaj, Bramoullé, and

Deröıan (2014), Galeotti, Golub, and Goyal (2020), Ballester et al. (2006). For directed

networks, we have mainly those involved in financial contagion and systemic risk including

Eisenberg and Noe (2001), Demange (2016), Feinstein (2017), to mention but a few.

For our main focus, we discuss neutrality in pairwise transfers between agents. This

concept has been well introduced in Bergstrom et al. (1986) and discussed in Allouch

(2015), Allouch (2017), and also discussed in specific instances such as when agents are

altruistic as found in Bourlès et al. (2017).

2 The Model

Assume an economy with N = {1, . . . , n} set of agents. Let Ni ⊂ N be the set of

neighbours of an agent i ∈ N and ni = |Ni| as the cardinality of the set. Each agent

makes a decision based on their limited endowment given as wi. The agent contributes a

fraction of wi to a create a local public good and consumes what is left over. However,

let the agent’s preference mainly depend on the combination of their total neighbourhood

contribution and consumption utility. The consumption utility of the agent is in turn a

function of their contribution relative to their entire neighbours.
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The Agents’ Payoff

Let then qi represents agent i’s contribution while Qi his total neighbourhood contribution.

Also, let xi be the amount which agent i consumes given qi so that we have the following

budget equation for the agent i as xi + qi = wi. We then have agent i’s preference given

as Ui(qi, Q−i) such that Qi = qi + Q−i so that Ui(qi, Q−i) is twice differentiable in qi. We

adopt a Linear quadratic utility form5 as shown below;

Ui(qi, Q−i) = a
niqi
Q−i

wi + (1− a)Qi − 0.5
ni
Q−i

q2i . (2.1)

The parameter (1− a) ∈ ]0, 1[ is a constant and as such represents the degree of neigh-

bourhood complementary relationship arising from the degree to which local public good is

of benefit to the agent. This leaves the constant a ∈ ]0, 1[ as a residual for which measures

the proportion to which an agent i benefits from their contribution as a function of their

endowment. Depending on the magnitude of this constant, we could arrive at even deeper

intuition. An example of this is observed in the later part where we assume a = 0.5 which

then makes the agent i’s payoff as a direct function of their private consumption xi. The

payoff Ui(qi, Q−i) for each agent i ∈ N generates as its FOC i.e., U
′
i (qi), a linear best reply

function as;

qbri = min
{
awi + (1− a)n−1i Q−i, wi

}
. (2.2)

From (2.1), we see that agent i directly benefits from a fraction (1− a) of their neigh-

bourhood contributions. However, it is observable that in cases where the agent is only

interested in their individual contribution such that (1−a)qi replaces (1−a)Qi in the pay-

off function, or best reply in eq. (2.2) remains unchanged. There are possible reasons why

agents may be uninterested in their local public good provision. Take for example, a busi-

ness organisation where work-hours put in are seen as a sign of dedication and rewarded as

opposed to productivity. A worker who then puts in overtime work is treated with better

reception compared to one who spends the normal working hours but accomplishes more.

Moving on, we introduce an endowment based restriction as follows;

Assumption 1. For each agent i ∈ N , Ni 6= {} and wi > 0.

5As is widely use in complementary games for example, (Belhaj & Deröıan, 2019).
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While the standard public good problem in Networks shows strategic substitutes6, it is

possible to find complements arising from collective action. This may be due to reputation

or prestige arising from the total donations such that an agents’ preferences transcend the

basic need of aggregate neighbourhood provision of a public good. As stated earlier, we see

this concept introduced well in Glazer and Konrad (1996) as well as hinted considerably

in Fehr and Schmidt (1999).

Note that from (2.2), the PSNE Nash equilibrium vector q∗(G,A) is uniquely defined

in so far a > 0, i.e., a ∈ ]0, 1[, which always holds7 given the spectral properties of the

network. To find the Nash Equilibrium, the following algorithm is proposed;

1. Let κ ∈ K for K = {0, 1, . . . , κ, κ + 1, . . . , } be number of iteration needed to find

the equilibrium.

2. Begin by assuming that for each i ∈ N , qj∈Ni = wj∈Ni so that Q−i(0) =
∑

j∈Ni wj.

3. Then solve for each qi(0) where;

qi(0) = awi + (1− a)
Q−i(0)

ni
= awi + (1− a)

∑
j∈Ni wj

ni

.

4. If any qi(0) > wi, then qi(1) = wi. Otherwise, qi(1) = qi(0).

5. Solve for qi(κ) = awi + (1− a)Q−i(κ)
ni

until qi(κ+ 1) = qi(κ) for all agent i ∈ N .

6. Then qi(κ) such that qi(κ+ 1) = qi(κ) holds is the PSNE contribution q∗i ∀ i ∈ N .

7. The sequence terminates.

The sequence above is draws inspiration from network games of strategic complemen-

tarity with linear best replies. Most pertinent to the sequence above is the Fictitious

Default Sequence proposed by Eisenberg and Noe (2001). This is such that qi(κ) is non-

increasing in κ for κ ∈ K meaning that contributions either decrease or remain static at

each iteration.
6Examples include Allouch (2015), Bramoullé et al. (2014), Allouch (2017), etc.
7This is the case as it is only then we have vmax(AG) < 1 which guarantees uniqueness in complemen-

tary games. See (Ballester et al., 2006) for formal proof.
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Network

Let G = (gij)j∈Ni ∈ {0, 1}n×n represent the adjacency matrix whose elements such that

gij = gji = 1 if j ∈ Ni and gij = 0 otherwise. Let ν1(G), . . . , νn(G) be the eigenvalues

of the matrix (G). Also, we introduce a diagonal matrix A =
(
(1− a) · n−1i

)
i∈N ∈ R

n×n.

Also we have the vector Q = (I + G) · q for Q = (Qi)i∈N ∈ Rn+ represents the vector

of aggregate neighbourhood contribution. Let q∗ = (q∗i )i∈N ∈ Rn+ represent the Pure

Strategy Nash Equilibrium (PSNE) vector, w = (wi)i∈N ∈ Rn+ representing the column

vector of half of each agent i endowment.

3 Endowment and Interior Contribution

In this part, we look at network properties as well as their ability to shape the level of

contribution an agent potentially makes. We mildly discuss instances that may enable an

agent to contribute below its endowment and the role contagion and cascade of the effect

agents with less endowment play in such roles. Observe the following remark;

Remark 3.1. Say for each agent i ∈ N , q∗i ≤ wi.

This then means that the PSNE is given in weighted Bonacich centrality vector as;

q∗(G,A) = a(I −AG)−1 ·w (3.1)

Our aim in this section is to observe if indeed it is possible to have (3.1) for the set N

and also to understand and predict the magnitude of interior contribution based on the

Shortest Path concept. With this we write the following results;

Lemma 1. Let the Unweighted Bonacich centrality be B(G,A) = (I −AG)−1 · 1 such

that B(G,A) = (βi)i∈N ∈ Rn+. Then unweighted Bonacich centrality is identical for all

agent i ∈ N , i.e., B(G,A) = a−1 · 1.
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Proof. Since AG · 1 = (1− a) · 1, then it means for each i− th element in B(G,A),

βi(G,A) = 1 + (1− a)

(
n−1i

∑
j∈Ni

gij

)
+

(
(1− a)

(
n−1i

∑
j∈Ni

gij

))2

+ . . .

= 1 + (1− a) + (1− a)2 + . . .

=
1

a
.

Also, we have the following property of the equilibrium which ranks agents endowment

and highlight its relevance to the interior nature of the PSNE as given below;

Lemma 2. If we have w = w · 1 so that wealth is identical for all agent i ∈ N . Also,

PSNE becomes simply the endowment of each agent i i.e., q∗(G,A) = w.

Proof. Intuitive since we have the weighted Bonacich centrality (PSNE) as, q∗(G,A) =

(I −AG)−1 · a · w · 1 = a · w · (I −AG)−1 · 1 = a · w · a−1 · 1 = w.

For the sake of our analysis further, we begin with the following definition:

Definition 1. An agent i ∈ R with wi ∈ R++ is described as;

1. A rich agent: if q∗i < wi, and

2. A poor agent: if q∗i = wi.

Linking the definition above to lemma 2 leads us to the interpretation that where agent

have equal endowment, all agents are poor agents. We then specify sufficient conditions

for PSNE which includes at least one rich agent in the statement below;

Theorem 1. Given assumption 1, if an agent i ∈ N such that q∗i < wi exist at PSNE,

then ∃ an agent j ∈ N and j 6= i such that qj(Q−j) ≥ wj implying q∗j = wj.

Proof. Given b = (1− a), we have the best reply given as

qbri = max
{
awi + bn−1i Q−i, wi

}
.
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Since links are bilateral, then assume an agent i such that q∗i < wi . This means at least

one j ∈ Ni is such that wj < wi since it has to be the case that n−1i w−i∈Ni < wi. In turn,

agent j can only have q∗j < wj if and only if at least an agent k ∈ Nj for k 6= i is such that

wj > wk. Thus the sequence wi > wj > wk. This implies that there exists at least one

agent l such that no agent m ∈ Nl is such that wl > wm.

This means that for each N set of agents, at q∗, depending on the magnitude of b,

there may or may not ∃ at least one agent, say an agent k ∈ N such that it is described

as a poor agent.

The summary of the intuition behind theorem 1 above is to point out the property of our

contribution game which is that either all agents are maximally contributing or at least one

agent is so that it is not possible to have a PSNE that no agent is contributing maximally.

This instance of maximal contribution is when w = w ·1 so that endowments are identical.

Otherwise, an agent i ∈ N who has the least endowment will always contribute maximally

i.e, q∗i = wi.

Another intuition is the peer effect whereby agents who maximally contribute are likely

connected to agents with lower endowment such that those with lower endowment are

forced into maximal contribution while such maximal contributions are low enough to

achieve a contribution lower than the endowment of a direct (as well as indirect agents

depending) connected agent. For rich agents, it is possible to understand the magnitude

of contribution by tracking its proximity to a poor agent. We introduce the following

definitions;

Definition 2 (Shortest path). Assume a subset {i, j} ⊂ N such that gkl = glk = 1. Let us

have s ∈ S(i, j) for which |S(i, j)| ∈ N+ representing the set of all possible paths between

agent i and agent j who are non-adjacent. Then ∀ {i, j} ∈ N , the Weak Shortest Path

(WSP) Pt(i, j) = (1, 2, . . . θ), where 1 = i and θ = j, is the path for which

θ−1∑
i=1

gi,i+1|Pt(i, j) ≤
θ−1∑
i=1

gi,i+1|P−t6=t(i, j),

where
∑θ−1

i=1 gi,i+1|Pt∈S(i,j)(i, j) ∈ N+. If
∑θ−1

i=1 gi,i+1|Pt(i, j) �
∑θ−1

i=1 gi,i+1|P−t6=t(i, j) then

Pt(i, j) is a Strict Shortest path (SSP).
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Definition 3 (Shortest Weighted Path). Given definition 2, ∀ {i, j} ∈ N , the Weak

Shortest Weighted Path (WSWP) Ps(i, j) = (1, 2, . . . θ), where 1 = i and θ = j, is the

path for which
θ−1∑
i=1

n−1i gi,i+1|Ps(i, j) ≤
θ−1∑
i=1

n−1i gi,i+1|P−s 6=s(i, j),

Where
∑θ−1

i=1 n
−1
i gi,i+1|Ps∈S(i,j)(i, j) ∈ R+. If

∑θ−1
i=1 n

−1
i gi,i+1|Ps(i, j) �∑θ−1

i=1 n
−1
i gi,i+1|P−s≤s(i, j) then Ps(i, j) is a Strict Shortest Weighted Path (SSWP).

Assumption 2. For every {i, j} ∈ N , there exits a P(i, j) ∈ R+.

One direct implication of this assumption is the fact that for each {i, j} ∈ N , there

exists a shortest path Pt(i, j) as well as a Shortest weighted path (SWP) Ps(i, j) for which

both sets may not be equal to each other.

Lemma 3. Assume a SSWP given as Ps(i, j) = (1, 2 . . . , θ− 1, θ) for any {i, j} ∈ N and

graph AG where i = 1 and j = θ. Let Pd(i, j) be the duality of any path P(i, j) (which

are always totally ordered). The following statement holds true;

1. ni ≥ 1 for i = 1, θ.

2. nk 
 1 for 1 < k < θ.

3. Ps(j, i) = Pds (i, j) if and only if ni = nj.

Proof. Since i = 1 and j = θ represents the start and endpoint of the shortest path Ps(i, j),

then it is possible that ni = 1 given that 2 is the only adjacent agent to agent i. The same

goes for agent θ who may be adjacent strictly to agent θ−1. However, an agent 1 < k < θ

means that agent k is in-between at least 2 adjacent agents for the sake of Ps(i, j). Hence,

it is a contradiction that nk < 2.

We recall the shortest path from agent i to agent j as Ps(i, j) = (1, 2, . . . , θ−1, θ). Let

us have any path from agent j to agent i P(j, i) = (1, 2, . . . , θ̂ − 1, θ̂) in which 1 = j and

i = θ̂. Then for Ps(j, i) = (θ, θ − 1, . . . , 2, 1), it has to be that
∑2

j=θ n
−1
j gj,j−1|Pds (i, j) ≤∑θ̂−1

j=1 n
−1
j gj,j+1|P−s 6=s(j, i). Let us also have %s(i, j) = (g1,2, g2,3, . . . , gθ−2,θ−1, gθ−1,θ) be the
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set of edges/links corresponding to the shortest path Ps(i, j) then it is the case that

%s(i, j) =

(
1

n1

g1,2,
1

n2

g2,3, . . . ,
1

nθ−2
gθ−2,θ−1,

1

nθ−1
gθ−1,θ

)
=

(
1

n1

,
1

n2

, . . . ,
1

nθ−2
,

1

nθ−1

)
,

since all existing gij = gji = 1. Then the set of edges corresponding to Pds (i, j) becomes

%ds(i, j) =

(
1

nθ
,

1

nθ−1
, . . . ,

1

n3

,
1

n2

)
.

Then by process of elimination, the set difference is given by,

%s(i, j)− %ds(i, j) =
1

n1

− 1

nθ
.

This means that %s(i, j)− %ds(i, j) = {} if and only if ni = nj since i = 1 and j = θ.

Definition 4 (Shortest Walk). ∀ {i, j} ∈ N and a path Pt(i, j) = (1, 2, . . . θ) for t ∈ S(i, j)

(which is the WSP), the Shortest Walk between agent i and agent j denoted by ωs(i, j) is

simply given defined as follows

ωt(i, j)
def
= (1− a)θ−1

θ−1∏
i=1

n−1i gi,i+1|Pt(i, j). (3.2)

Lemma 4. Given the graph AG, for any {i, j} ∈ N we have that for ωt(i, j)|Pt(i, j),

Pt(i, j) is not necessarily the shortest path Ps(i, j).

Proof. The principle below shows the proof WLOG: Assume a, b, c, , d ∈ ]0, 1[ then say we

know conclusively that a+ b S d+ c, we are not able to conclude as to the magnitude of

a ∗ b when compared to d ∗ c.

Definition 5. Given {i, j} ∈ N , the shortest path Pt∈S(i, j) is defined as a Relevant

Shortest part if and only if there exists no agent k such that k ∈ Pt(i, j) and q∗k = wk.

Lemma 5. Given {i, j} ∈ N , assuming between the shortest path Pt(i, j) we have a

k ∈ Pt(i, j) such that q∗k = wk, then Pt(i, j) is no longer a Relevant Shortest Path. As

such the shortest path becomes either of the following;
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1. Pt̂(i, j) such that k /∈ Pt̂(i, j) and
∑θ−1

i=1 gi,i+1|Pt̂(i, j) =
∑θ−1

i=1 gi,i+1|Pt(i, j) where

Pt(i, j) is a weak shortest path and;

2.
∑θ−1

i=1 gi,i+1|Pt̂(i, j) >
∑θ−1

i=1 gi,i+1|Pt(i, j) but
∑θ−1

i=1 gi,i+1|Pt̂(i, j) ≤∑θ−1
i=1 gi,i+1|P−t̂6=t6=s(i, j) in the case where Pt(i, j) is the strict shortest path.

Proof. This is intuitive given the strategic dominance of q∗k.

This describes our shortest path as simply the path between agent i and agent j that

has the least amount of edges/link
(
n−1i gi,i+1

)
’s in between them. The importance of this

property lies in understanding the link between closeness to a poor agent(s) and interior

contribution. Additionally, our assumption 2 implies that the network graph given by the

adjacency matrix G is such that there is no disjointed sub-network, and an undirected

walk exits between every 2 agents in the network. We summarise in the following results;

Theorem 2. Assuming an agent j such that PSNE is its endowment, i.e., q∗j = wj, then

assume for {j}c ⊂ N such that {j}c ∩ {j} = {}, wi = w for all i ∈ {j}c. Then for any

i, k ∈ {j}c for which |Pt(i, j)| = |Pt(k, j)| (where Pt(·) is the SSP) and ωt(i, j) = ωt(k, j),

the PSNE q∗i ≥ q∗k so far as ni ≥ nj.

Proof. Given agent j has the PSNE q∗j = wj while Pt(i, j) = (1, 2 . . . , θ − 1, θ) represents

the path yielding the shortest walk from agent i to agent j. Then since excluding wj,

the equilibrium would simply have been qi = aw + (1−a)(n.i)
ni

w = w. Assuming then that

κ(θ − 1) ∈ K representing the iteration akin to the number of edges of the shortest path

for θ = |Pt(i, j)| ∈ N+ , then we have the value of qi(κ) as follows;

qi(k, wj) = aw

(
1 +

θ−2∑
ι=1

(1− a)ι∏ι
i=1 ni

)
+ w

(
θ−1∑
ι=1

(1− a)ι(nι − 1)∏ι
i=1 ni

)
+

(1− a)θ−1∏θ−1
i=1 ni

wj

= w

(
a+

θ−2∑
ι=1

(1− a)ι(nι − 1 + a)∏ι
i=1 ni

+ (nθ−1 − 1)
(1− a)θ−1∏θ−1

i=1 ni

)
+

(1− a)θ−1∏θ−1
i=1 ni

wj

= w

(
a+

θ−2∑
ι=1

(1− a)ι(nι − 1 + a)∏ι
i=1 ni

+ (nθ−1 − 1)ωt(i, j)

)
+ ωt(i, j)wj.
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Since it is the case that ωt(i, j) = (1 − a)θ−1
∏θ−1

i=1 n
−1
i . We also know that the value

(1−a)θ−1 is the same for either agent i and agent k since |Pt(i, j)| = |Pt(k, j)|. Then given∏θ−1
i=1 ni =

∏θ−1
k=1 nk and the value (1− a) < 1, we have the most significant amount in the

bracket above as (1−a)(ni−1)
ni

. This is because as i → θ − 2, then even if
∏θ−1

i=1 ni becomes

larger due to some added nl, then its impact on the numerator nl−1
nl
→ 1 the larger nl is.

But then we still have
∏θ−1
i=1 ni
nl

on the numerator which is significantly whilst excluding the

discount from (1− a)l which makes such value trivial. Since then (1−a)(ni−1)
ni

→ (1− a) the

larger ni becomes, our theorem holds.

Our main take from this statement would be that while it is easily deduced that agents

who are closest (or have fewer walks) to a poor agent are more likely contributing less due

to such proximity, the neighbourhood composition of 2 agents who might be equidistant

to the poor agent may still lead to disparity in the level of contribution. This links to the

concept of closeness centrality but it is quickly observable that such centrality accounts for

the shortest path to every node as opposed to simply a poor agent. We use the example

below to illustrate further;

h

i

j

k

Figure 1: Line Network.

Example 1. Assume the network in fig. 1 where w = (12, 6, 15, 5)> and a = 1
2
. We have

the

q∗ = (9, 6, 10.25, 5)>.

If on the other hand from fig. 1, we have w = (12, 12, 12, 5)>, then

q∗ = (11.7, 11.5, 10.1, 5)>
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.

In the example above, we see the relationship between the agent’s contribution, wealth,

and proximity to the interior(rich) or non-interior (poor) contributing agents. From the 2

examples, we see an instance where the presence of a least-endowed agent leads to interior

contribution in only its direct neighbour and the second instance where all other agents

contribute below the agents’ endowment. This is because in example 1 the agent i has such

low endowment such that a lower average neighbour endowment
(

0.5
∑

j∈Ni qj

)
, which

arises from agent j being directly connected to agent k, is still greater than wi. Broadly, a

poorer agent reduces contribution from interconnected agents and its effect diminishes by

the number of walks. However, this reduction is halted if there exists another poor agent

who is unaffected by the poorest agent indirect effect.

4 Rich Agents and Neutral Transfers

Going further, we aim to explore the policy properties of our equilibrium. More precisely,

we investigate the possibility of neutral transfers and their implication, if any, on agents’

welfare. We begin by excluding agents whose contributions are non-interior (poorer agents)

as follows; Let R = {1, . . . , r} for R ( N , r = |R| ∈ N represent the set of wealthy agents

who are such that for an agent i ∈ R, q∗i < wi and then N /R be the poorer agents

so that another agent j ∈ N /R when q∗j < wj. Also, let AR =
(
(1− a)n−1i

)
i∈R and

GR = (gij)j∈{Ni∩R} be the r× r matrices which represent both the normalising parameter

and the interconnection between wealthy agents. Lastly, we have the vector ŵR = (ŵi)i∈R

which is such that for an agent i ∈ R, if an agent j ∈ {Ni ∩N /R}, then ŵi = awi + (1−

a)n−1i wj implying it adds its share of profit from poor neighbours8. Our Nash equilibrium

contribution is then written as follows;

q∗R = a · (I −ARGR)−1 · ŵR. (4.1)

with this, we can proceed to observe further properties. One possible question would

be the concept of wealth transfer and neutrality. We recall from Bergstrom et al. (1986)

8This implies that if {Ni ∩N/R} = {}, then ŵi = wi.
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as well as Allouch (2015) that for a small tax/subsidy which we denote for an agent i ∈ R

as ti ∈ R such tax is said to be neutral if,

(xti, Q
t
i) = (x∗i , Q

∗
i )

which implies that the agent’s private consumption and neighbourhood contributions re-

main unchanged. Some guiding results still apply to this problem which we write below;

Theorem 3 (Pairwise Transfers). WLOG, assume {i, j} ( R. A budget balanced transfer

between a set of agents given as ti and tj such that ti + tj = 0 is neutral if and only if it;

1. leaves the set R constant at equilibrium, i.e R(t) = R.

2. the pair share the same neighbourhood, i.e

Ni ∪ {i} = Nj ∪ {j}.

Proof. See Proof of Theorem 3 in Allouch (2015).

One quick observation from this statement would be that it would be impossible to

make such transfers in a network as in fig. 1 as agent h and agent j are not within the same

neighbourhood9. We can see this illustrated in fig. 2 in which apart from transfers between

agent i and agent j in fig. 2c, no other transfer is feasible since no other 2 agents in either

the fig. 2a, fig. 2b or fig. 2d has the same neighbourhood components. Another implication

of the theorem above is that ni = nj and also Q∗i = Q∗i . We proceed to establish some

vector property conditions. Let xR = (x∗i )i∈R ∈ R+ be the private consumption of each

agent i ∈ R, we further write a complementary result on the properties of the transfer

vector t as follows;

Theorem 4. A vector of transfer t is neutral if t is an eigenvector corresponding to

ν(AG) = 1− a.

9We treat agent k as though it is poor, i.e., agent k ∈ N/R.
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Proof. So we know from Allouch (2015) that since for each agent i ∈ R,

qti − q∗i =
(
awi + (1− a)n−1i wj∈{Ni∩N/R} + ti − xti

)
−
(
awi + (1− a)n−1i wj∈{Ni∩N/R} − x∗i

)
,

= ti − (xti − x∗i ).

So then if xti − x∗i = 0, then we have that qti − q∗i = ti so that changes in local

contributions becomes;

Qt
i −Q∗i = ti +

∑
j∈Ni

tj = 0,

which is according to our neighbourhood homogeneous condition. This means that we

have in vector form that

qt − q∗ = a (I −ARGR)−1 · t

= t.

This implies that

(I −ARGR) · t = a · t,

and as such we have

t− a · t−ARGR · t = 0

or then can be written as

(1− a) · t = AG · t. (4.2)

This implies that t is the eigenvector of AG corresponding to ν = 1− a from our spectral

radius properties.

Another way to arrive at this condition could be by solving for the private consumption

differential given as

xt − x∗ = ∆x(t) = 0.
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So we then have that

∆x(t) =
(
wR + t− a · (I −ARGR)−1 · (ŵR + t)

)
−
(
wR − a · (I −ARGR)−1 · ŵR

)
,

= t− a · (I −ARGR)−1 · (ŵR + t) + a · (I −ARGR)−1 · ŵR,

= t− a · (I −ARGR)−1 · t

= 0

which can then be written as;

t = a · (I −ARGR)−1 · t

(I −ARGR) · t = a · t

Given us the same expression as in (4.2).

h

i

j

k
l

(a) Ring Network.

h

i

j

k
l

m

(b) Star Network.

h

i

j

k
l

(c) Irregular Network .

h

i

j

k
l

(d) Alternate Star Network.

Figure 2: Sample Networks from several GR.
It is observable here that it is only fig. 2c that shows the possibility for a neutral transfer.
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We further can determine the range of transfer. We then present the following results for

the threshold value of neutral transfer;

Theorem 5 (Pairwise Transfer). Assume {i, j} ( R, tj = −ti for ti ∈ R+ and the

conditions in theorem 3 holds, then the magnitude of transfer, ti, possible such that

(xti, Q
t
i) = (x∗i , Q

∗
i ) ∀ agent i ∈ R is given as follows;

ti ∈
]
0,
niwj −Q∗−j
ni + 1

[
. (4.3)

Proof. WLOG, assume for {i, j} ( R, tj = −ti and ti ∈ R+. Then from theorem 3, we

have that the following equation has to hold;

a(wi + ti) + b
1

ni
(Q∗−i − ti) < wi + ti. (4.4)

Before going further, it is worth noting that we do not lose generality because take for

example {l,m} ⊂ {Ni ∩Nj ∩R}, then a transfer tl = −tm and tl > 0 means that

Qt
−i = . . .+ qtl + qtm + . . .

= . . .+ q∗l + tl + q∗m − tl + . . .

= Q−i,

which in turn implies Qt
−j = Q∗−j. Then from (4.4), we have that

1

ni
(Q∗−i − ti) < wi + ti,

which is the same as

Q∗−i − niwi < ti(ni + 1)

thus giving us;

ti > (ni + 1)−1(Q∗−i − niwi). (4.5)

Then for agent j which has tj = −ti we intuitively multiply (4.5) by minus and replace
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each item accordingly so that we have;

ti < (nj + 1)−1(njwj −Q∗−j). (4.6)

Since from theorem 3 we know that 1 + ni = 1 + nj then ni = nj so that we have the

expression of the threshold ti as

ti ∈
]
Q∗−i − niwi
ni + 1

,
niwj −Q∗−j
ni + 1

[
.

We also know that for any agent i ∈ R, Q∗−i < niwi. This means that Q∗−i − niwi < 0

and since ti ∈ R+ for our pairwise transfer then 0 becomes the lower bound.

It should be noted that ni = nj which is an implication of theorem 3. This gives

room for relatively small transfers especially as the neighbourhood size is larger. This is

quite important as there are indeed utilitarian welfare implications of making transfers as

discussed in the next section.

4.1 Neighbourhood Contribution Vs Individual Provision

In this part, we show that transfers from richer to poorer agents within the same neigh-

bourhood are the most optimal transfer. We adopt the standard utilitarian welfare

whereby given the Nash contribution of each agent i as q∗i , and the sum of its neigh-

bours Q∗−i =
∑

j∈Ni q
∗
j , then the total welfare from the contribution game is given as∑

i∈N Ui(q
∗
i , Q

∗
−i, xi) Which is the sum of each agents’ welfare. Going forward, we intro-

duce another assumption which though restrictive, serves the purpose of giving us some

interesting properties.

Assumption 3. a = 0.5.

One key motivation for this assumption as such that we now have the agent i’s payoff

as a function of his private consumption xi since we now have awi − 0.5qi = 0.5xi. At

this point, it is also observable that the payoff becomes isomorphic to that introduced in

Galeotti et al. (2010) where equilibrium contributions are mapped by neighbours average

contribution. We then write the following results;
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Proposition 1. Assume ti = 0 for an agent i ∈ R and ∃ some {j, k} ∈ Ni such that

tj > 0 for which given t, xt = x∗. Then ∆Ui(t) = 0 so that payoff for agent i is neutral

to t.

Proof. Since we know that qti − q∗i = ti − (xti − x∗i ) and xti = x∗i then it means that

qti = ti + q∗i = q∗i .

Also, given that Qt
i = Q∗i then,

Qt
−i = Qt

i − qti = Q∗i − q∗i = Q∗−i.�

Lemma 6. For each agent i ∈ R such that ti ∈ R+ and (xti, Q
t
i) = (x∗i , Q

∗
i ) we have the

following welfare differential;

∆Ui(t) =

0.5nix
∗
i

(
Q∗i ti

Q∗2i −tiQ∗−i

)
For ci = (1− a)Q−i

0.5
(

nix
∗
iQ
∗
i ti

Q∗2i −tiQ∗−i
+ ti

)
For ci = 0.

(4.7)

Proof. If we assume ci = (1− a)Q−i, then we have that

Ui(qi, Q−i) =
niqi
Q−i

(awi − 0.5qi) + (1− a)Qi. (4.8)

assuming the transfer ti which is neutral so that xi and Qi remain unchanged. Here, we

are now focusing on agents who care/benefit from neighbourhood contributions. So if the

planner makes a transfer ti > 0, we then have the payoff for the agent i as;

Ui(t,q
t) =

niq
t
i

Qt
−i

(a(wi + ti)− 0.5qti) + (1− a)Q∗i . (4.9)

For simplicity, we introduce the following assumption; Then the welfare differential now

becomes,

Ui(t,q
t)− Ui(q∗) = ∆Ui(t) =

(
qti
Qt
−i
− q∗i
Q∗−i

)
0.5nixi (4.10)
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Given neutrality, we know that qti +Qt
−i = q∗i +Q∗−i which implies that

Q∗−i = qti − q∗i +Qt
−i = ti +Qt

−i.

Therefore we have that;

∆Ui(t) = 0.5nix
∗
i

(
qti
Qt
−i
− q∗i
Q∗−i

)
,

= 0.5nix
∗
i

(
qti
Qt
−i
− q∗i
ti +Qt

−i

)
,

= 0.5nix
∗
i

(
qti
(
ti +Qt

−i
)
−Qt

−iq
∗
i

Qt
−i
(
ti +Qt

−i
) )

,

= 0.5nix
∗
i

(
qtiti +Q∗−iti

Qt
−i
(
ti +Qt

−i
)) ,

= 0.5nix
∗
i

(
Q∗i ti

Qt
−i
(
ti +Qt

−i
)) = nix

∗
i

(
Q∗i ti

Qt
−i (Q

∗
i − q∗i )

)
,

= 0.5nix
∗
i

(
Q∗i ti

Qt
−iQ

∗
−i

)
= nix

∗
i

(
Q∗i ti

(Q∗i − (ti + q∗i )) (Q∗i − q∗i )

)
,

= 0.5nix
∗
i

(
Q∗i ti

Q∗2i − tiQ∗−i

)

On the other hand where ci = 0 we have (1− a)qti − (1− a)q∗i = (1− a)ti so that we now

have

∆Ui(t) = 0.5nix
∗
i

(
Q∗i ti

Q∗2i − tiQ∗−i

)
− 0.5ti.

The information above provides us with the intuition that since |ti| < Q−i < Qi, then

if ti > 0, ∆Ui(t) > 0 and vice versa. However, for the broad welfare from this model, we

use pairwise equilibrium to generalise the conditions for the welfare improvement. This is

given the theorem 5 proof where we see that welfare of neighbours other than those whom

the transfer is between is neutral to such transfer. We then have the following results;

Theorem 6. Assuming a pairwise transfer ti > 0, welfare differential
∑

i∈R∆Ui(t) is

invariant of ci for all i ∈ R.
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Proof. Here we are able to hold a ∈ ]0, 1[ as being unspecified. We already know that given

ti 6= 0 for an agent i ∈ R, where ci = (1−a)Q−i, then given Ui(qi, Q−i) = a(·)i+(1−a)Qi,

then (1− a)Qt
i − (1− a)Q∗i = 0.

However, say ci 6= (1− a)Q−i then we have ∆Ui(t) = a(·)i + (1− a)ti since in that case

ti : ti → ci(ti) = 0. But then we recall that ∃ an agent j such that tj = −ti so that for j,

we have ∆Uj(t) = a(·)j − (1− a)ti which still means that

∑
i∈R

∆Ui(t) = a(·)i + a(·)j.

This is quite interesting as we see here that while lemma 6 shows that the agent i

who receives ti potentially experiences a welfare improvement which is only increased if

his payoff is dependent on neighbourhood provision, the exact improvement is offset by

the loss in the welfare of the agent j whose tj = −ti such that aggregate payoff evens out.

One question that might potentially arise from this result is why we consider ci > 0 to

begin with. The simple reason is that with a non-neutral transfer, ci(Q−i) = (1 − a)Q−i

for example means that ci + (1−a)q∗i = (1−a)Qi is such that (1−a) (Qt
i −Q∗i ) 6= 0 which

then affects overall welfare differently. Also, we specify further conditions for welfare

improvement as follows;

Theorem 7. For every pair nodes, say agents {i, j} ⊂ R such that tj = −ti for ti ∈ R+

and t is a neutral transfer vector, there exists a non-Pareto welfare improvement i.e,∑
i∈R∆Ui(t) ∈ R++ when then the following condition holds;

x∗j − x∗i <
ti
Q∗i

(
x∗i + x∗j

)
. (4.11)

Proof. WLOG, Assume R = {i, j, . . .} such that agent j ∈ Ni and {i, j} ∈ N−i 6=j. Then
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assume ti + tj = 0 such that ti > 0. we have;

∑
i∈R

∆Ui(t) =
0.5
(
nix

∗
iQ
∗
i

(
Q∗2j + tiQ

∗
−j
)
ti − njx∗jQ∗j

(
Q∗2i + tiQ

∗
−i
))
ti(

Q∗2i − tiQ∗−i
) (
Q∗2j + tiQ∗−j

) ,

=
0.5
(
nix

∗
iQ
∗
iQ
∗2
j + tinix

∗
iQ
∗
iQ
∗
−j − njx∗jQ∗jQ∗2i + tinjx

∗
jQ
∗
jQ
∗
−i
)
ti(

Q∗2i − tiQ∗−i
) (
Q∗2j + tiQ∗−j

) ,

=
0.5
(
nix

∗
iQ
∗
iQ
∗2
j − njx∗jQ∗jQ∗2i + tiQ

∗
iQ
∗
−j(nix

∗
i + njx

∗
j)
)
ti(

Q∗2i − tiQ∗−i
) (
Q∗2j + tiQ∗−j

) ,

=
0.5
(
nix

∗
iQ
∗
j − njx∗jQ∗i + ti(nix

∗
i + njx

∗
j)
)
Q∗iQ

∗
j ti(

Q∗2i − tiQ∗−i
) (
Q∗2j + tiQ∗−j

) ,

=
0.5
(
nix

∗
i (Q

∗
j + ti) + njx

∗
j(ti −Q∗i )

)
Q∗iQ

∗
j ti(

Q∗2i − tiQ∗−i
) (
Q∗2j + tiQ∗−j

) ,

since we know that ti < n−1i Q−i then we can claim that Q∗2i −tiQ∗−i > 0 for any ti within

the threshold in theorem 5. The computation above then implies that for
∑

i∈R∆Ui(t) ∈

R+, it has to hold that nix
∗
i (Q

∗
j + ti) + njx

∗
j(ti − Q∗i ) > 0 in which such a condition is

rewritten as nix
∗
jQ
∗
i < nix

∗
i (Q

∗
j + ti) + njx

∗
j ti. But we know from theorem 3 that ni = nj

and Q∗i = Q∗j . So then when we multiply by n−1i , we have

x∗jQ
∗
i − x∗iQ∗i < x∗i ti + x∗j ti.

h

i

j

k
l

Figure 3: Network with one poor agent

Example 2. Assume a network with N = {h, i, j, k, l} as in fig. 3 where agent l ∈ N/R

and a = 0.5. We can see that a neutral transfer ti > 0 for ti + tj = 0 is feasible if within
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the threshold as in eq. (4.3). Assuming wi = wj, then we know that (x∗i , Q
∗
i ) = (x∗j , Q

∗
j).

This means that it is impossible to meet the threshold ti ∈
]
0,

3wi−Q∗−i
4

[
since 3wi−Q∗−i =

−(Q∗−i − 3wi) but Q∗−i − 3wi > 0.

Observing the proposition above, if we assume that x∗i < x∗j then x∗i − x∗j > 0 such

that transfer ti need be large enough to bridge the ratio gap otherwise the planner faces a

welfare loss due to such transfer policies. Another possible implication of the result above is

that neutral pairwise transfer is impossible among 2 agents with identical neighbourhoods

who in turn possess identical wealth endowment.

5 Conclusions

In this work, we introduce and identify some early properties of collective action problems

where the decisions of agents are dependent on the extent of contributions of neighbours.

Such interactions always lead to at least one corner contributing agent such that the extent

of interior contributions becomes increasingly dependent on the weighted nearness to such

corner agent. We also see how neutral transfers are capable of improving overall welfare

in such a network. We observe how this improvement holds overall even in cases where

neighbourhood provision is of value to a representative agent.

It should be noted that our emphasis on pairwise transfer does not limit our results

especially given that such transfers are neutral. Neutral transfers rely on strict conditions

such that they are only achieved if such transfer within the neighbourhood is likened to a

simple pairwise transfer between 2 agents. A noticeable skepticism may arise through the

concept of attribution peer effect to mean-neighbours contributions. This may be due to

alternative forms including instances where peer-based contributions are a direct function

of the next largest contribution so that agents are only best off should they be the largest

neighbourhood contributor. This may be worth exploring. Also is the question of optimal

budget-balanced transfer which may not be transfer-neutral and welfare properties of such

transfer.
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Bramoullé, Y., & Kranton, R. (2007). Public goods in networks. Journal of Economic

Theory , 135 (1), 478–494.
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