If you are fascinated by the ‘how and why’ of the material world, as well as underlying physical concepts of the stars and galaxies, which make up the Universe, a degree in Physics with Astrophysics is for you. At Kent you learn from academics making the discoveries that shape our world and play a part in this research yourself.
While spending a year at one of our partner universities, you study equivalent courses to those you would take at Kent, and return to complete the fourth year of our Integrated Master's. This means you graduate with a valuable postgraduate qualification which can give you the edge in the job market.
We have a strong focus on your future career and how to get you there, and to ensure you are equipped with the skills and knowledge needed to succeed in today's job market, our curriculum changes and adapts. You also benefit from our expert careers advice to give you the best possible start when deciding on your future career.
This programme is fully accredited by Institute of Physics (IOP).
Astrophysics emphasises the underlying physical concepts of the stars and galaxies, which make up the Universe. This provides an understanding of the physical nature of bodies and processes in space and the instruments and techniques used in modern astronomical research.
In your first year, you get to grips with the broad knowledge base on which physical science is built, including electricity and light, mathematics, mechanics, thermodynamics and matter. You also develop your experimental, computational, statistical and analytical skills.
Your second and final years include a broad range of modules such as quantum mechanics, solid state, atomic, nuclear and particle physics, electromagnetism and optics, and mathematical techniques as well as the mulitwavelength universe exoplanets and stars, galaxies and the universe.
You spend the third year of your degree at one of our global partner universities, which have previously included institutions in the USA, Canada, Hong Kong and Switzerland. You study equivalent courses to those you would take at Kent.
Our degrees are not only designed to give the best possible start to your career, they are also flexible so that you do the best degree for you. Up until your second year you are able to move between our programmes, including the opportunity to complete a professional placement to put into practice the skills you learnt and make valuable industry contacts, or our three-year BSc. You could also to complete an integrated masters courses without a year abroad with our MPhys.
If you do not have the grades or scientific background for direct entry, you can take the Physics Foundation Year. Upon successful completion of this year, you are well placed to move onto any of our Physics, Physics with Astrophysics, or Astronomy, Space Science and Astrophysics degrees.
You have access to first-class research facilities in new laboratories. These are equipped with state-of-the-art equipment, including a full characterisation suite for materials, including:
Our Beacon Observatory provides a fully automised system with both optical telescope and radio telescope capability. It includes a 17" astrograph from Plane Wave Instruments with a 4k x 4k CCD and a BVRIHa filter set, as well as a 90-frames-per-second camera.
As well as a fascinating course with great opportunities to further your career potential, we work hard to give you the best possible wider student experience.
You will be part of an international scientific community of physics and astronomy, chemistry and forensic science, bioscience and medical and sport science students, as well as being able to join a range of student-led societies and groups.
As well as inspiring you to realise your potential, we are here to support this with excellent in-house student support to assist with pastoral issues and careers experts with specialist knowledge as well as Academic advisors and peer mentors to help with your studies.
You are encouraged to participate in conferences and professional events to build up your knowledge of the science community and enhance your professional development.
The University is a member of the South East Physics Network (SEPnet), which offers a competitive programme of summer internships to Stage 2 and 3 undergraduates.
Our department also has links with:
Please also see our general entry requirements.
ABB, including A level Mathematics and Physics at BB (not Use of Mathematics)
The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis.
If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above.
The University will consider applicants holding/studying BTEC Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science or Engineering subject at 180 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances.
34 points or 15 at HL including Physics and Mathematics 5 at HL or 6 in SL (not Mathematics Studies)
N/A
Please contact the School for more information at study-astro@kent.ac.uk.
The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.
If you need to increase your level of science/mathematics ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.
For more advice about applying to Kent, you can meet our staff at a range of international events.
Please see our English language entry requirements web page.
If you need to improve your English language standard as a condition of your offer, you can attend one of our pre-sessional courses in English for Academic Purposes before starting your degree programme. You attend these courses before starting your degree programme.
Duration: 4 years full-time
The course structure below gives a flavour of the modules and provides details of the content of this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.
You take all compulsory modules.
This module provides an introduction to astronomy, beginning with our own solar system and extending to objects at the limits of the universe. Straightforward mathematics is used to develop a geometrical optics model for imaging with lenses and mirrors, and this is then used to explore the principles of astronomical telescopes.
This module builds on prior knowledge of arithmetic, algebra, and trigonometry. It will cover key areas of mathematics which are widely used throughout undergraduate university physics. In the first part it will look at functions, series, derivatives and integrals. In the second part it will look at vectors, matrices and complex numbers.
This module builds on the Mathematics I module to develop key mathematical techniques involving multiple independent variables. These include the topics of differential equations, multivariate calculus, non-Cartesian coordinates, and vector calculus that are needed for Physics modules in Stages 2 and 3.
In this module the mathematics of vectors and calculus are used to describe motion, the effects of forces in accordance with Newton's laws, and the relation to momentum and energy. This description is extended to rotational motion, and the force of gravity. In addition, the modern topic of special relativity is introduced.
This module examines key physical phenomena of waves and fields which extend over time and space. The first part presents a mathematical description of oscillations and develops this to a description of wave phenomena. The second part is an introduction to electromagnetism which includes electric and magnetic fields before providing an introduction to the topic of electrical circuits.
This module develops the principles of mechanics to describe mechanical properties of liquids and solids. It also introduces the principles of thermodynamics and uses them to describe properties of gases. The module also introduces the modern description of atoms and molecules based on quantum mechanics.
This module gives students experience in using laboratory apparatus and equipment to carry out physics experiments. They will also learn how to record and analyse data and write a report. The module also introduce students to using programming/scripting languages to analyse data, and the mathematics of probability and statistics.
You take all compulsory modules.
This module builds on the students' previous introduction to quantum phenomena taught in stage 1. Students develop and enhance their knowledge of quantum physics through the study of the theory, formalism and fundamental principles. This module covers for example the Schödinger equation, its meaning and how to solve it for simple models, the superposition principle and probability amplitudes.
This module applies some of the fundamental principles of physics to the study of atomic physics. Students build on their knowledge of quantum mechanics through the study of the theory, formalism, and fundamental principles in topics such as the hydrogen atom, the effect of a magnetic field on the atomic structure or the X-ray spectra of an atom.
This module builds on the brief introduction to electromagnetic fields previously taught in earlier stages. Students develop and enhance their knowledge of electromagnetism through the study of the theory, formalism and fundamental principles. This module covers for example the principles of electrostatics, magnetostatics and Maxwell’s equations.
This module builds on the brief introduction to astronomy previously taught in earlier stages. Students enhance their knowledge of astrophysics through the study of the theory, formalism and fundamental principles developing a rigorous grounding in observational, computational and theoretical aspects of astrophysics. In particular they study topics such as properties of galaxies and stars and the detection of planets outside the solar system.
This module introduces and develops students’ understanding of the major subsystems of a spacecraft through the study of the theory, formalism and fundamental principles, as well as the framework to understand spacecraft trajectories and orbits and the basic ideas about management of space missions.
In this module students develop their experience of the practical nature of physics, including developing their ability to execute an experiment, and to use programming scripts to process data. Students also develop their skill in analysis of uncertainties, and comparison with theory. The module strengthens students’ communication skills and knowledge of, and ability to write, all components of laboratory reports.
This module gives students experience of group work in the context of a physics investigation in an unfamiliar area. The module includes workshops for advice about successful group project work, and culminates in each group producing a report and presentation.
This module builds on the mathematics taught in earlier stages. Students will develop and enhance their knowledge of mathematical methods used in the physical sciences. This module covers for example how to solve linear differential equations and Fourier transforms.
You spend a year between Stages 2 and 4 at one of our global partner universities, which have previously included institutions in the USA, Canada, Hong Kong and Switzerland. For a full list, please see Go Abroad. Places are subject to availability.
You are expected to adhere to any academic progression requirements in Stages 1 and 2 to proceed to the Year Abroad. If the requirement is not met, you will be transferred to the equivalent programme without a Year Abroad. The Year Abroad is assessed on a pass/fail basis and will not count towards your final degree classification.
Going abroad as part of your degree is an amazing experience and a chance to develop personally, academically and professionally. You experience a different culture, gain a new academic perspective, establish international contacts and enhance your employability.
PH790 needs to cover a majority of learning outcomes in Stage 3 of the parent MPhys programme. The modules in the university abroad should normally cover similar topics at a similar level. Note that a one-to-one correspondence is not feasible and would negate the purpose of the Year Abroad, which is to provide the student with the experience of the educational system abroad. In addition, the student has the opportunity to study some modules which are not available at University of Kent.
With regards to topics, the academic liaison (typically DoUGS Physics) will check and approve the students choice of modules at the time they are at the university abroad.
You take all compulsory modules and then choose two from a list of optional modules.
All MPhys students undertake a substantial, open-ended, individual, laboratory, theoretical or computationally-based project. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams. Students must undertake a research project in an area relevant to their degree specialism, with project options tailored to the Physics, Physics with Astrophysics and Astronomy Space Science and Astrophysics programmes.
This advanced specialised module will provide students with an understanding of the physics of star formation and galactic structures.
This module provides students with an appreciation of more advanced formulations of classical mechanics, including the Lagrange and Hamiltonian formulations, as well as other topics in mechanics and dynamics, including chaos.
This advanced specialist module provides students with in-depth knowledge of astrobiology as well as the science of the solar system’s formation and evolution. This includes the methods by which we explore our solar system, from study of planetary atmospheres and surfaces to missions to comets and asteroids.
This advanced level module provides students with an understanding of two emergent properties of matter: magnetism and superconductivity. In addition to studying the rich physics underpinning these phenomena, students will also gain an appreciation of their important applications in the modern world.
Quantum mechanics is the theoretical basis of much of modern physics. Building on the introductory quantum theory studied in earlier stages, this module will review some key foundational ideas before developing more advanced topics of quantum mechanics and quantum field theory.
This module will give students an overarching introduction to quantum information processing (QIP). At the end of the course the students will have a basic understanding of quantum computation, quantum communication, and quantum cryptography; as well as the implications to other fields such as computation, physics, and cybersecurity. We will take a multi-disciplinary approach that will encourage and require students to engage in topics outside of their core discipline. The module will cover the most essential mathematical background required to understand QIP. This includes: linear algebra, basic elements of quantum theory (quantum states, evolution of closed quantum systems, Born's rule), and basic theory of computing. The module will introduce students to the following theoretical topics: quantum algorithms, quantum cryptography, quantum communication & information. The module will also address experimental quantum computation & cryptography.
The 2021/22 annual tuition fees for this programme are:
For details of when and how to pay fees and charges, please see our Student Finance Guide.
For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
Fees for Home undergraduates are £1,385.
Fees for Home undergraduates are £1,385.
Students studying abroad for less than one academic year will pay full fees according to their fee status.
Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.
We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.
Search scholarshipsKent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.
You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.
Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.
At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence.
The scholarship will be awarded to any applicant who achieves a minimum of A*AA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.
Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine one-hour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in Physics and general communication skills. In the MPhys final year, you work with a member of staff on an experimental or computing project.
Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2/4 assessments with a 40/60 weighting. Stage 3 is assessed as a pass or fail.
Please note that there are degree thresholds at stages 1 and 2 that you will be required to pass in order to continue onto the next stages. If you do not meet the thresholds at stage 1 and 2 you will be required to change your registration for the equivalent MPhys programme without the Year Abroad option.
For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours. The precise breakdown of hours will be subject dependent and will vary according to modules. Please refer to the individual module details under Course Structure.
Methods of assessment will vary according to subject specialism and individual modules. Please refer to the individual module details under Course Structure.
The programme aims to:
MPhys students gain a systematic understanding of most fundamental laws and principles of physics and astrophysics, along with their application to a variety of areas in physics and/or astrophysics, some of which are at the forefront of the discipline.
The areas covered include:
You gain intellectual skills in how to:
As an MPhys student, you also develop:
You gain subject-specific skills in:
As an MPhys student, you also gain:
You gain transferable skills in:
Physics and Astronomy at Kent scored 89% overall in The Complete University Guide 2021.
You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as: excellent communication skills work independently or as part of a team the ability to solve problems and think analytically time management. This means that our graduates are well equipped for careers across a range of fields and have gone on to work for companies such as BAE, Defence Science and Technology, Rolls Royce, Siemens and IBM. You can read some of their stories, and find out about the range of support and extra opportunities available to further your career potential here.
Fully accredited by the Institute of Physics.
This course page is for the 2021/22 academic year. Please visit the current online prospectus for a list of undergraduate courses we offer.
T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk
Discover Uni is designed to support prospective students in deciding whether, where and what to study. The site replaces Unistats from September 2019.
Discover Uni is jointly owned by the Office for Students, the Department for the Economy Northern Ireland, the Higher Education Funding Council for Wales and the Scottish Funding Council.
It includes:
Find out more about the Unistats dataset on the Higher Education Statistics Agency website.