Introduction: Principles and examples of stochastic modelling, types of stochastic process, Markov property and Markov processes, short-term and long-run properties. Applications in various research areas.
Random walks: The simple random walk. Walk with two absorbing barriers. First–step decomposition technique. Probabilities of absorption. Duration of walk. Application of results to other simple random walks. General random walks. Applications.
Discrete time Markov chains: n–step transition probabilities. Chapman-Kolmogorov equations. Classification of states. Equilibrium and stationary distribution. Mean recurrence times. Simple estimation of transition probabilities. Time inhomogeneous chains. Elementary renewal theory. Simulations. Applications.
Continuous time Markov chains: Transition probability functions. Generator matrix. Kolmogorov forward and backward equations. Poisson process. Birth and death processes. Time inhomogeneous chains. Renewal processes. Applications.
Queues and branching processes: Properties of queues - arrivals, service time, length of the queue, waiting times, busy periods. The single-server queue and its stationary behaviour. Queues with several servers. Branching processes. Applications.
In addition, level 7 students will study more complex queuing systems and continuous-time branching processes.
This module will cover a number of syllabus items set out in Subject CS2 published by the Institute and Faculty of Actuaries. This is a dynamic syllabus, changing regularly to reflect current practice.
Total contact hours: 48
Private study hours: 102
Total study hours: 150
Level 6
Assessment 1 (10-15 hrs) 15%
Assessment 2 (10-15 hrs) 15%
Examination (2 hours) 70%
Level 7
Assessment 1 (10-15 hrs) 15%
Assessment 2 (10-15 hrs) 15%
Examination (2 hours) 70%
Reassessment methods
Like-for-like
Ross, S.M. (1996) Stochastic Processes. New York, Wiley.
Breuer, L. and Baum, D. (2005) An introduction to Queueing Theory and Matrix-Analytic Methods. Springer, Dordrecht.
Jones, P.W. and Smith, P. (2001) Stochastic Processes: An Introduction. London, Arnold.
Karlin, S., Taylor, H.M. (1998) A First Course in Stochastic Processes. 3rd Edition, Academic Press, London.
Ross, S.M. (1970) Applied Probability Models with Optimization Applications. Holden-Day, San Francisco.
Cox, D.R. and Miller, H.D. (1965) The Theory of Stochastic Processes. Chapman & Hall/CRC.
Study notes published by the Actuarial Education Company for Subject CS2.
See the library reading list for this module (Canterbury)
The intended subject specific learning outcomes.
On successfully completing the level 6 module students will be able to:
1 demonstrate systematic understanding of key aspects of stochastic modelling;
2 demonstrate the capability to deploy established approaches accurately to analyse and solve problems using a reasonable level of skill in calculation and manipulation of
the material in the following areas: random walks, discrete and continuous time Markov chains, queues and branching processes;
3 apply key aspects of stochastic modelling in well-defined contexts, showing judgement in the selection and application of tools and techniques.
The intended generic learning outcomes.
On successfully completing the level 6 module students will be able to:
1 manage their own learning and make use of appropriate resources;
2 understand logical arguments, identifying the assumptions made and the conclusions drawn;
3 communicate straightforward arguments and conclusions reasonably accurately and clearly and communicate technical material competently;
4 manage their time and use their organisational skills to plan and implement efficient and effective modes of working;
5 solve problems relating to qualitative and quantitative information;
6 make competent use of information technology skills such as online resources (Moodle);
7 communicate technical material competently;
8 demonstrate an increased level of skill in numeracy and computation;
9 demonstrate the acquisition of the study skills needed for continuing professional development.
University of Kent makes every effort to ensure that module information is accurate for the relevant academic session and to provide educational services as described. However, courses, services and other matters may be subject to change. Please read our full disclaimer.