Physics - MPhys

This is an archived course for 2020 entry
Join our world

Physics reaches from the quark to the largest of galaxies, encompassing all matter and timescales within these extremes. If you are fascinated by the ‘how and why’ of the material world, our Physics MPhys equips you with the skills to understand these phenomena and prepares you for a range of career pathways.

Overview

The School of Physical Sciences is a dynamic multidisciplinary department, achieving national and international excellence in chemistry, forensic science and physics. We offer a broad training in physics, and provide an ideal preparation for a wide range of careers in the manufacturing and service industries as well as education, the media and the financial sector.

This programme is fully accredited by the Institute of Physics (IOP).

Our degree programme

In your first year, you get to grips with the broad knowledge base on which physical science is built, including electricity and light, mathematics, mechanics, thermodynamics and matter. You also develop your experimental, statistical and analytical skills.

Your second year covers a broad range of subjects including medical physics, quantum physics, atomic and nuclear physics, electromagnetism and optics, and mathematical techniques.

In your third year, the combination of specialist modules and an attachment to one of our research teams opens avenues for even deeper exploration: for example, in space probe instrumentation, fibre optics, the atomic-scale structure of a new engineering material, or neutron scattering work.

The final year of the MPhys programme brings your core knowledge and skills up to an advanced level. This stage concentrates on the in-depth training required for a science-based career, including the practical aspects of the research processes and a major project within the School's research group.

Student view

Physics student Anthony talks about his course at the University of Kent.


Year abroad

You can spend the third year of your degree in the USA, Canada or Hong Kong studying equivalent courses to those you would take at Kent. For full details, see Physics with a Year Abroad - MPhys.

BSc programme

You also have the option of doing a three-year BSc degree. For details, see Physics. It is possible to take the BSc with a placement year and gain valuable work experience. For details, see Physics with a Year in Industry.

Foundation year

If you do not have the grades you need to study on our BSc degree, you could take Physics with a Foundation Year.

Study resources

You have access to first-class research facilities in new laboratories. These are equipped with state-of-the-art equipment, including a full characterisation suite for materials, including:

  • three powder diffractometers
  • a single crystal diffractometer
  • x-ray fluorescence
  • instruments to measure magnetic and transport properties
  • a Raman spectrometer
  • scanning electron microscopes
  • optical coherence tomography imaging equipment
  • optical spectrum analysers
  • two-stage light gas gun for impact studies
  • on-campus Beacon Observatory.

The University is a member of the South East Physics Network (SEPnet), which offers a competitive programme of summer internships to Stage 2 and 3 undergraduates.

Extra activities

The School of Physical Sciences is home to an international scientific community of forensic science, chemistry, physics and astronomy students. Numerous formal and informal opportunities for discussion make it easy to participate in the academic life of the School. All students have an academic adviser and we also run a peer mentoring scheme.

You are encouraged to participate in conferences and professional events to build up your knowledge of the science community and enhance your professional development. The School also works collaboratively with business partners, which allows you to see how our research influences current practice.

You can also take part in:

  • the School’s Physical Sciences Colloquia, a popular series of talks given by internal and external experts on relevant and current topics
  • the student-run Physics and Space Societies, which organise talks with top industry professionals, practical demonstrations and social events

Professional networks

The School of Physical Sciences also has links with:

  • the Home Office
  • optical laboratories
  • local health authorities
  • aerospace/defence industries
  • software and engineering companies
  • Interpol.

Accreditation

Institute of Physics

Every day I just look around and think I'm so lucky to be here.

Anthony Quinlan - Physics MPhys

Entry requirements

The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice. 

Please note that meeting this typical offer/minimum requirement does not guarantee an offer being made.Please also see our general entry requirements.

New GCSE grades

If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.

  • medal-empty

    A level

    ABB, including A level Mathematics and Physics at BB (not Use of Mathematics)

  • medal-empty Access to HE Diploma

    The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. 

    If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above.

  • medal-empty BTEC Nationals

    The University will consider applicants holding/studying BTEC Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science or Engineering subject at 180 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances

  • medal-empty International Baccalaureate

    34 points overall or 15 at Higher, including Mathematics 5 at HL or 6 at SL (not Mathematics Studies)

Choosing Kent as your firm choice for this programme could result in a lower tariff offer than those listed below. Please contact the School for more information at spsadmissions@kent.ac.uk.  

The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.

If you need to increase your level of science/mathematics ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.

Meet our staff in your country

For more advice about applying to Kent, you can meet our staff at a range of international events. 

English Language Requirements

Please see our English language entry requirements web page.

Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme. 

Course structure

Duration: 4 years full-time

The course structure below gives a flavour of the modules and provides details of the content of this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.

Stage 1

Compulsory modules currently include

This module provides an introduction to astronomy, beginning with our own solar system and extending to objects at the limits of the universe. Straightforward mathematics is used to develop a geometrical optics model for imaging with lenses and mirrors, and this is then used to explore the principles of astronomical telescopes.

Find out more about PHYS3040

This module builds on prior knowledge of arithmetic, algebra, and trigonometry. It will cover key areas of mathematics which are widely used throughout undergraduate university physics. In the first part it will look at functions, series, derivatives and integrals. In the second part it will look at vectors, matrices and complex numbers.

Find out more about PHYS3110

This module builds on the Mathematics I module to develop key mathematical techniques involving multiple independent variables. These include the topics of differential equations, multivariate calculus, non-Cartesian coordinates, and vector calculus that are needed for Physics modules in Stages 2 and 3.

Find out more about PHYS3120

In this module the mathematics of vectors and calculus are used to describe motion, the effects of forces in accordance with Newton's laws, and the relation to momentum and energy. This description is extended to rotational motion, and the force of gravity. In addition, the modern topic of special relativity is introduced.

Find out more about PHYS3210

This module examines key physical phenomena of waves and fields which extend over time and space. The first part presents a mathematical description of oscillations and develops this to a description of wave phenomena. The second part is an introduction to electromagnetism which includes electric and magnetic fields before providing an introduction to the topic of electrical circuits.

Find out more about PHYS3220

This module develops the principles of mechanics to describe mechanical properties of liquids and solids. It also introduces the principles of thermodynamics and uses them to describe properties of gases. The module also introduces the modern description of atoms and molecules based on quantum mechanics.

Find out more about PHYS3230

This module guides students through a series of experiments giving them experience in using laboratory apparatus and equipment. Students will also learn how to accurately record and analyse data in laboratory notebooks and write scientific laboratory reports. The experiments cover subjects found in the Physics degree program and are run parallel with Computing Skills workshops in which students are introduced to the concept of using programming/scripting languages to analyse and report data from their experiments.

Find out more about PHYS3700

One-on-one meetings and group tutorials focused on academic progression and the development of key skills to support the core curriculum and future study or employment. Students meet with their Academic Advisor individually or in groups at intervals during the academic year. Individual meetings review academic progress, support career planning etc. Themed tutorials develop transferable skills; The tutorials are informal involving student activity and discussion. Year group events deliver general information e.g. on University resources, 4-year programmes, module selection etc.

Find out more about PSCI3020

Stage 2

You take six compulsory modules and then choose one from a list of optional modules.

Compulsory modules currently include

Most practicing physicists at some point will be required to perform experiments and take measurements. This module, through a series of experiments, seeks to allow students to become familiar with some more complex apparatus and give them the opportunity to learn the art of accurate recording and analysis of data. This data has to be put in the context of the theoretical background and an estimate of the accuracy made. Keeping of an accurate, intelligible laboratory notebook is most important. Each term 3 three week experiments are performed. The additional period is allocated to some further activities to develop experimental and communications skills including communication to a non-specialist audience.

Find out more about PHYS5000

This module provides an introduction to quantum mechanics, developing knowledge of wave-functions, the Schrodinger equation, solutions and quantum numbers for important physical properties. Topics include: 2-state systems. Bras and kets. Eigenstates and Eigenvalues; Superposition Principle; Probability Amplitudes; Change of Basis; Operators. The Schrodinger equation. Stationary states. Completeness. Expectation values. Collapse of the wave function. Probability density. Solutions of the Schrodinger equation for simple physical systems with constant potentials: Free particles. Particles in a box. Classically allowed and forbidden regions. Reflection and transmission of particles incident onto a potential barrier. Probability flux. Tunnelling of particles. The simple harmonic oscillator. Atomic vibrations.

Find out more about PHYS5020

This module will build on the general principles of quantum mechanics introduced earlier in the degree and applied them to the description of atoms, starting by the description of the hydrogen atom and covering other topics such as the effect of magnetic fields on an atom or X-ray spectra.

Find out more about PHYS5030

This module looks to introduce a range of important laws and principles relating to the physics of electromagnetism and optics. Students will also learn mathematical techniques to enable the modelling of physical behaviour and apply important theory to a range of electromagnetism and optics scenarios.

Find out more about PHYS5040

The aim of the module in Medical Physics is to provide a primer into this important physics specialisation. The range of subjects covered is intended to give a balanced introduction to Medical Physics, with emphasis on the core principles of medical imaging, radiation therapy and radiation safety. A small number of lectures is also allocated to the growing field of optical techniques. The module involves a major contribution from the professional medical physicist.

Syllabus:

Radiation protection (radiology, generic); Radiation hazards and dosimetry, radiation protection science and standards, doses and risks in radiology; Radiology; (Fundamental radiological science, general radiology, fluoroscopy and special procedures); Mammography (Imaging techniques and applications to health screening); Computed Tomography (Principles, system design and physical assessment); Diagnostic ultrasound (Pulse echo principles, ultrasound imaging, Doppler techniques); Tissue optics (Absorption, scattering of light in the tissue); The eye (The eye as an optical instrument); Confocal Microscopy (Principles and resolutions); Optical Coherence Tomography (OCT) and applications; Nuclear Medicine (Radionuclide production, radiochemistry, imaging techniques, radiation detectors); In vitro techniques (Radiation counting techniques and applications); Positron Emission Tomography (Principles, imaging and clinical applications); Radiation therapies (Fundamentals of beam therapy, brachytherapy, and 131I thyroid therapy); Radiation Protection (unsealed sources); Dose from in-vivo radionuclides, contamination, safety considerations.

Find out more about PHYS5130

The module will provide a firm grounding in mathematical methods: both for solving differential equations and, through the study of special functions and asymptotic analysis, to determine the properties of solutions.

Find out more about PHYS5880

One-on-one meetings and group tutorials focused on academic progression and the development of key skills to support the core curriculum and future study or employment. Students meet with their Academic Advisor individually or in groups at intervals during the academic year. Individual meetings review academic progress, support career planning etc. Themed tutorials develop transferable skills; The tutorials are informal involving student activity and discussion. Year group events deliver general information e.g. on University resources, 4-year programmes, module selection etc.

Find out more about PSCI5040

Optional modules may include

This module builds on the brief introduction to astronomy previously taught in earlier stages. Students enhance their knowledge of astrophysics through the study of the theory, formalism and fundamental principles developing a rigorous grounding in observational, computational and theoretical aspects of astrophysics. In particular they study topics such as properties of galaxies and stars and the detection of planets outside the solar system.

Find out more about PHYS5070

This module aims to provide a basic understanding of the major subsystems of a spacecraft system and the frameworks for understanding spacecraft trajectory and orbits, including interplanetary orbits, launch phase and altitude control. Students will also gain an awareness of ideas on how space is a business/commercial opportunity and some of the management tools required in business.

Find out more about PHYS5080

Stage 3

Compulsory modules currently include

After taking the classes students should be more fluent and adept at solving and discussing general problems in Physics (and its related disciplines of mathematics and engineering).

There is no formal curriculum for this course, which uses and demands only physical and mathematical concepts with which the students at this level are already familiar.

Problems are presented and solutions discussed in topics spanning several topics in the undergraduate physics curriculum (Mechanics and statics, thermodynamics, and optics, etc).

Problems are also discussed that primarily involve the application of formal logic and reasoning, simple probability, statistics, estimation and linear mathematics.

Find out more about PHYS6020

Special Relativity: Limits of Newtonian Mechanics, Inertial frames of reference, the Galilean and Lorentz transformations, time dilation and length contraction, invariant quantities under Lorentz transformation, energy momentum 4-vector.

Maxwell's equations: operators of vector calculus, Gauss law of electrostatics and magnetostatics, Faraday's law and Ampere's law, physical meanings and integral and differential forms, dielectrics, the wave equation and solutions, Poynting vector, the Fresnel relations, transmission and reflection at dielectric boundaries.

Modern Optics: Resonant cavities and the laser, optical modes, Polarisation and Jones vector formulation.

Find out more about PHYS6040

Thermodynamics

Review of zeroth, first, second laws. Quasistatic processes. Functions of state. Extensive and intensive properties. Exact and inexact differentials. Concept of entropy. Heat capacities. Thermodynamic potentials: internal energy, enthalpy, Helmholtz and Gibbs functions. The Maxwell relations. Concept of chemical potential. Applications to simple systems. Joule free expansion. Joule-Kelvin effect. Equilibrium conditions. Phase equilibria, Clausius-Clapeyron equation. The third law of thermodynamics and its consequences – inaccessibility of the absolute zero.

Statistical Concepts and Statistical Basis of Thermodynamics

Basic statistical concepts. Microscopic and macroscopic descriptions of thermodynamic systems. Statistical basis of Thermodynamics. Boltzmann entropy formula. Temperature and pressure. Statistical properties of molecules in a gas. Basic concepts of probability and probability distributions. Counting the number of ways to place objects in boxes. Distinguishable and indistinguishable objects. Stirling approximation(s). Schottkly defect, Spin 1/2 systems. System of harmonic oscillators. Gibbsian Ensembles. Canonical Ensemble. Gibbs entropy formula. Boltzmann distribution. Partition function. Semi-classical approach. Partition function of a single particle. Partition function of N non-interacting particles. Helmholtz free energy. Pauli paramagnetism. Semi Classical Perfect Gas. Equation of state. Entropy of a monatomic gas, Sackur-Tetrode equation. Density of states. Maxwell velocity distribution. Equipartition of Energy. Heat capacities. Grand Canonical Ensemble.

Quantum Statistics

Classical and Quantum Counting of Microstates. Average occupation numbers: Fermi Dirac and Bose Einstein statistics. The Classical Limit. Black Body radiation and perfect photon gas. Planck's law. Einstein theory of solids. Debye theory of solids.

Find out more about PHYS6050

To provide an introduction to solid state physics. To provide foundations for the further study of materials and condensed matter, and details of solid state electronic and opto-electronic devices.

Structure:

Interaction potential for atoms and ions. Definitions, crystal types. Miller indices. Reciprocal lattice. Diffraction methods.

Dynamics of Vibrations.

Lattice dynamics, phonon dispersion curves, experimental techniques.

Electrons in k-space: metals.

Free electron theory of metals. Density of states. Fermi-Dirac distribution. Band theory of solids - Bloch's theorem. Distinction between metals and insulators. Electrical conductivity according to classical and quantum theory. Hall effect.

Semiconductors.

Band structure of ideal semiconductor. Density of states and electronic/hole densities in conduction/valence band. Intrinsic carrier density. Doped semiconductors.

Magnetism.

Definitions of dia, para, ferromagnetism. Magnetic moments. General treatment of paramagnetism, Curie's law. Introduction to ferromagnetism.

Find out more about PHYS6060

This module provides a foundation in numerical approximations to analytical methods – these techniques are essential for solving problems by computer. An indicative list of methods is: Linear equations, zeros and roots, least squares & linear regression, eigenvalues and eigenvectors, errors and finite differences, linear programming, interpolation and plotting functions, numerical integration, numerical differentiation, solutions to ordinary differential equations using numerical methods.

Find out more about PHYS6110

This module is an introduction to the developments in classical mechanics since the time of Newton. In it, students will learn a variety of methods to formulate complex problems in classical systems and classify different types of dynamics that may occur.

Find out more about PHYS6210

This module will introduce students to basic concepts in nuclear and particle physics, and will provide an understanding of how the principles of quantum mechanics are used to describe matter at sub-atomic length scales. The following concepts will be covered:

* Properties of nuclei: Rutherford scattering. Size, mass and binding energy, stability, spin and parity.

* Nuclear Forces: properties of the deuteron, magnetic dipole moment, spin-dependent forces.

* Nuclear Models: Semi-empirical mass formula M(A, Z), stability, binding energy B(A, Z)/A. Shell model, magic numbers, spin-orbit interaction, shell closure effects.

* Alpha and Beta decay: Energetics and stability, the positron, neutrino and anti-neutrino.

* Nuclear Reactions: Q-value. Fission and fusion reactions, chain reactions and nuclear reactors, nuclear weapons, solar energy and the helium cycle.

* Experimental methods in Nuclear and Particle Physics (Accelerators, detectors, analysis methods, case studies will be given).

* Discovery of elementary particles and the standard model of particles

* Leptons, quarks and vector bosons

* The concept of four different forces and fields in classical and quantum physics; mediation of forces via virtual particles, Feynman Diagrams

* Relativistic Kinematics

* Relativistic Quantum Mechanics and Prediction of Antiparticles

* Symmetries and Conservation Laws

* Hadron flavours, isospin, strangeness and the quark model

* Weak Interactions, W and Z bosons

Find out more about PHYS6660

One-on-one meetings and group tutorials focused on academic progression and the development of key skills to support the core curriculum and future study or employment. Students meet with their Academic Advisor individually or in groups at intervals during the academic year. Individual meetings review academic progress, support career planning etc. Themed tutorials develop transferable skills; The tutorials are informal involving student activity and discussion. Year group events deliver general information e.g. on University resources, 4-year programmes, module selection etc.

Find out more about PSCI6050

Students will develop a number of skills related to the investigation and planning of research such as analytical skills, critical thinking and ability to understand and communicate scientific information in graphically. Students will learn how to search and retrieve information from a variety of locations (colloquia, websites, journals, proceedings etc). They will learn how to compile professionally-produced scientific documents such as colloquia reports, posters and applications for funding of future research activities/research job applications. The Group research investigation strengthens these skills, adding experience of working in a team.

Find out more about PSCI7000

Stage 4

Compulsory modules currently include

Aims:

To provide an experience of open-ended research work.

To begin to prepare students for postgraduate work towards degrees by research or for careers in R&D in industrial or government/national laboratories.

To deepen knowledge in a specialised field and be able to communicate that knowledge orally and in writing.

Syllabus

All MPhys students undertake a laboratory, theoretical or computationally-based project related to their degree specialism. These projects may also be undertaken by Diploma students. A list of available project areas is made available during Stage 3, but may be augmented/revised at any time up to and including Week 1 of Stage 4. As far as possible, projects will be assigned on the basis of students' preferences – but this is not always possible: however, the project abstracts are regarded as 'flexible' in the sense that significant modification is possible (subject only to mutual consent between student and supervisor). The projects involve a combination of some or all of: literature search and critique, laboratory work, theoretical work, computational physics and data reduction/analysis. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams.

Find out more about PHYS7000

• Approximation Methods, perturbation theory, variational methods.

• Classical/Quantum Mechanics, measurement and the correspondence principle.

• Uncertainty Principle and Spin precession.

• Key Experiments in Modern Quantum Mechanics (Aharonov-Bohm, neutron diffraction in a gravitational field, EPR paradox).

• Experimental methods in Particle Physics (Accelerators, targets and colliders, particle interactions with matter, detectors, the LHC).

• Feynman Diagrams, particle exchange, leptons, hadrons and quarks.

• Symmetries and Conservation Laws.

• Hadron flavours, isospin, strangeness and the quark model.

• Weak Interactions, W and Z bosons.

Find out more about PHYS7220

Introduction. Magnetism, magnetometry and measuring techniques, Localised magnetic moments, spin and orbital moments, magnetic moments in solids. Paramagnetism. Exchange interactions, direct, indirect and superexchange, Magnetic structures, ferro, ferri, antiferromagnetism. Neutron and X-ray scattering. Spin waves, magnons. Magnetic phase transitions. Superconductivity: Introduction to properties of superconductors, Thermodynamics and electrodynamics of superconductors, Type I and Type II superconductors, the flux lattice Superconducting phase transitions. Microscopic superconductivity, correlations lengths, isotope effect, Cooper pairs, Froehlich Interaction, BCS theory. High Tc superconductors, superfluids, liquid helium.

Find out more about PHYS7520

One-on-one meetings and group tutorials focused on academic progression and the development of key skills to support the core curriculum and future study or employment. Students meet with their Academic Advisor individually or in groups at intervals during the academic year. Individual meetings review academic progress, support career planning etc. Themed tutorials develop transferable skills; The tutorials are informal involving student activity and discussion. Year group events deliver general information e.g. on University resources, 4-year programmes, module selection etc.

Find out more about PSCI7030

Optional modules may include

This module will give students an overarching introduction to quantum information processing (QIP). At the end of the course the students will have a basic understanding of quantum computation, quantum communication, and quantum cryptography; as well as the implications to other fields such as computation, physics, and cybersecurity.

We will take a multi-disciplinary approach that will encourage and require students to engage in topics outside of their core discipline. The module will cover the most essential mathematical background required to understand QIP. This includes: linear algebra, basic elements of quantum theory (quantum states, evolution of closed quantum systems, Born's rule), and basic theory of computing. The module will introduce students to the following theoretical topics: quantum algorithms, quantum cryptography, quantum communication & information. The module will also address experimental quantum computation & cryptography.

Find out more about COMP8220

Space Astronomy:

Why use space telescopes; other platforms for non-ground-based astronomical observatories (sounding rockets, balloons, satellites); mission case study; what wavelengths benefit by being in space; measurements astronomers make in space using UV, x-ray and infra-red, and examples of some recent scientific missions.

Exploration of the Solar System:

Mission types from flybys to sample returns: scientific aims and instrumentation: design requirements for a spacecraft-exploration mission; how to study planetary atmospheres and surfaces: properties of and how to explore minor bodies (e.g. asteroids and comets): current and future missions: mission case study; how space agencies liaise with the scientific community; how to perform calculations related to the orbital transfer of spacecraft.

Solar System Formation and Evolution:

The composition of the Sun and planets will be placed in the context of the current understanding of the evolution of the Solar System. Topics include: Solar system formation and evolution; structure of the solar system; physical and orbital evolution of asteroids.

Extra Solar Planets:

The evidence for extra Solar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed.

Life in Space:

Introduction to the issue of what life is, where it may exist in the Solar System and how to look for it.

Find out more about PHYS7090

Flight Operations: Control of spacecraft from the ground, including aspects of telecommunications theory.

Propulsion and attitude control: Physics of combustion in rockets, review of classical mechanics of rotation and its application to spacecraft attitude determination and control.

Impact Damage: The mechanisms by which space vehicles are damaged by high speed impact will be discussed along with protection strategies.

Human spaceflight: A review of human spaceflight programs (past and present). Life-support systems. An introduction to some major topics in space medicine; acceleration, pressurisation, radiation, etc.

International Space Station: Status of this project/mission will be covered.

Find out more about PHYS7110

Chemists and physicists are now playing an important role in the growing field of materials research. More recently, there has been a growing interest, driven by technological needs, in materials with specific functions and this requires a combination of physics and chemistry. For example, new materials are needed for the optics and electronics industry (glasses and semiconductors). The aim of this module is to introduce students to this area of modern materials and associated techniques. Examples of the topics that might typically be covered are: Crystals and crystallography; Molecular materials; Glasses; Magnetism and Magnetic Materials; Multiferroics; X-ray absorption spectroscopy (XAS).

Find out more about PSCI6040

Fees

The 2020/21 annual tuition fees for this programme are:

  • Home/EU full-time TBC
  • International full-time TBC

For details of when and how to pay fees and charges, please see our Student Finance Guide.

Full-time tuition fees for Home and EU undergraduates are £9,250.

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

Additional costs

General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

Teaching and assessment

Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine one-hour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in physics and general communication skills. In the MPhys final year, you work with a member of staff on an experimental or computing project.

Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2/3/4 assessments with maximum weight applied to the final stage.

Please note that there are degree thresholds at stages 2 and 3 that you will be required to pass in order to continue onto the next stages.

Contact hours

For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours.  The precise breakdown of hours will be subject dependent and will vary according to modules.  Please refer to the individual module details under Course Structure.

Methods of assessment will vary according to subject specialism and individual modules.  Please refer to the individual module details under Course Structure.

Programme aims

The programme aims to:

  • Foster an enthusiasm for physics by exploring the ways in which it is core to our understanding of nature and fundamental to many other scientific disciplines.
  • Enhance an appreciation of the application of physics in different contexts.
  • Involve students in a stimulating and satisfying experience of learning within a research-led environment.
  • Motivate and support a wide range of students in their endeavours to realise their academic potential.
  • Provide students with a balanced foundation of physics knowledge and practical skills and an understanding of scientific methodology.
  • Enable students to undertake and report on an experimental and/or theoretical investigation based in part on an extended research project.
  • Develop in students a range of transferable skills of general value.
  • Enable students to apply their skills and understanding to the solution of theoretical and practical problems.
  • Provide students with a knowledge base that allows them to progress into more specialised areas of physics, or into multi-disciplinary areas involving physical principles; the MPhys is particularly useful for those wishing to undertake physics research.
  • Generate in students an appreciation of the importance of physics in the industrial, economic, environmental and social contexts.

Learning outcomes

Knowledge and understanding

You gain a systematic understanding of most fundamental laws and principles of physics, along with their application to a variety of areas in physics, some of which are at the forefront of the discipline.

The areas covered include:

  • Electromagnetism.
  • Classical and quantum mechanics.
  • Statistical physics and thermodynamics.
  • Wave phenomena and the properties of matter as fundamental aspects.
  • Nuclear and particle physics.
  • Condensed matter physics.
  • Materials.
  • Plasmas and fluids.

Intellectual skills

You gain intellectual skills in how to:

  • Identify relevant principles and laws when dealing with problems and make approximations necessary to obtain solutions.
  • Solve problems in physics using appropriate mathematical tools.
  • Execute an experiment or investigation, analyse the results and draw valid conclusions.
  • Evaluate the level of uncertainty in experimental results and compare the results to expected outcomes, theoretical predictions or published data in order to evaluate their significance.
  • Use mathematical techniques and analysis to model physical phenomena.
  • Solve advanced problems in physics using mathematical tools, translate problems into mathematical statements and apply knowledge to obtain order of magnitude or more precise solutions.
  • Interpret mathematical descriptions of physical phenomena.
  • Plan an experiment or investigation under supervision and understand the significance of error analysis.
  • A working knowledge of a variety of experimental, mathematical and/or computational techniques applicable to current research within physics.

Subject-specific skills

You gain subject-specific skills in:

  • The use of communications and IT packages for the retrieval of information and analysis of data.
  • How to present and interpret information graphically.
  • The use of laboratory apparatus and techniques, including aspects of health and safety.
  • The systematic and reliable recording of experimental data.
  • Communications and IT skills which show fluency at the level needed for project work, such as familiarity with a programming language, simulation software or the use of mathematical packages for the manipulation and numerical solution of equations.
  • An ability to communicate complex scientific ideas, the conclusion of an experiment, investigation or project concisely, accurately and informatively.
  • Experimental skills showing the competent use of specialised equipment, the ability to identify appropriate pieces of equipment and master new techniques.
  • An ability to make use of appropriate texts, research-based materials or other learning resources as part of managing your own learning; an ability to make use of research articles and other primary sources.

Transferable skills

You gain transferable skills in:

  • Problem-solving including the ability to formulate problems in precise terms, identify key issues and have the confidence to try different approaches.
  • Independent investigative skills including the use of textbooks, other literature, databases and interaction with colleagues.
  • Communication skills when dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner.
  • Analytical skills including the ability to manipulate precise and intricate ideas,  construct logical arguments, use technical language correctly and pay attention to detail.
  • Personal skills including the ability to work independently, use initiative, organise your time to meet deadlines and interact constructively with other people.

Independent rankings

Physics and Astronomy at Kent scored 89% overall in The Complete University Guide 2021.

Over 90% of Physics and Astronomy graduates who responded to the most recent national survey of graduate destinations were in work or further study within six months (DLHE, 2017).

Of final-year Physics students who completed the National Student Survey 2020, 94% were satisfied with the quality of learning resources.

Careers

Graduate destinations

Kent Physics graduates have an excellent employment record with recent graduates going on to work for employers:

  • Defence Science and Technology

  • Rolls Royce

  • Siemens

  • IBM

Career-enhancing skills

You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as:

  • excellent communication skills

  • work independently or as part of a team

  • the ability to solve problems and think analytically

  • time management.

You can also enhance your degree studies by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

Help finding a job

The University has a friendly Careers and Employability Service which can give you advice on how to:

  • apply for jobs

  • write a good CV

  • perform well in interviews.


Professional recognition

Fully accredited by the Institute of Physics.

Apply for Physics - MPhys

This course page is for the 2020/21 academic year. Please visit the current online prospectus for a list of undergraduate courses we offer.

Contact us

bubble-text
earth

International student enquiries

Enquire online

T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk

network

Discover Uni information

Discover Uni is designed to support prospective students in deciding whether, where and what to study. The site replaces Unistats from September 2019.

Discover Uni is jointly owned by the Office for Students, the Department for the Economy Northern Ireland, the Higher Education Funding Council for Wales and the Scottish Funding Council.

It includes:

  • Information and guidance about higher education
  • Information about courses
  • Information about providers

Find out more about the Unistats dataset on the Higher Education Statistics Agency website.