Computer Systems Engineering

Computer Systems Engineering including a Foundation Year - BEng (Hons)

UCAS code H614

This is an archived page and for reference purposes only

2019

Advances in electronics, computing and communications have made a huge impact on every aspect of modern life. This programme teaches you the skills and expertise needed to design the computer systems that shape the way we live.

Overview

The range of uses for computers is increasing all the time – from smartphones, games consoles, and tablets to aircraft flight control systems, super computers, autonomous robots and global telecommunications. Our degree gives you up-to-date knowledge of computer hardware and software, and a background knowledge of electronics, communications systems and control theory.

The programme is accredited by the Institution of Engineering and Technology (IET), on behalf of the Engineering Council. This allows graduates to follow an approved process to gain Chartered Engineer status.

Our degree programme

The Foundation Year aims to extend access to university education to students from a wide variety of educational backgrounds and age groups and prepares these students for our three-year Engineering degrees. 

This programme is for students who do not have the grades they need for direct entry on to our BEng programmes. In your Foundation Year, you study electronics, computing, physics and mathematics. On successful completion of your Foundation Year, you can go to the Computer Systems Engineering degree or Electronic and Communications Engineering - BEng (Hons).

Computer technology, telecommunications and consumer electronics are rapidly evolving, so experts in these fields are in great demand. Our Computer Systems Engineering degree is based on leading-edge research and has been designed with strong industrial input.

In your first and second years of the BSc programme, you are introduced to a wide range of computing and engineering modules. You can study the theoretical background of digital technologies, communications principles and object-oriented programming, and take modules in robotics, computer interfacing and engineering mathematics.

Your final year allows you to specialise in a particular topic of interest. This could include computer networks and communication, computer security and cryptography, digital signal processing, digital control, digital systems design and embedded computer systems.

All years include project work that replicates industrial practice to maximise the employability of our graduates.

Year in industry

You can take a work placement between the second and third years of the degree. This provides valuable workplace experience and can increase your professional contacts. For more details, see Computer Systems Engineering with a Year in Industry.

Study resources

The School of Engineering and Digital Arts offers cutting-edge equipment and facilities, including:

  • four air-conditioned computer suites with 150 high-end computers
  • 120-seat engineering laboratory
  • extensive professional CAD development software
  • PCB and surface-mount facilities
  • mechanical workshop
  • Matlab for system modelling
  • 3dMD 3D imaging scanner for general purpose capture and biometric research
  • VICON Infrared Motion Capture System
  • anechoic chamber for EMC (pre-compliance testing) and antenna characterisation.

Extra activities

Kent Union has a range of student-run clubs and societies to enable you to network, develop your skills and socialise with students from across the University.

Professional network

The School of Engineering and Digital Arts has a long history of collaboration with industry. We have a strong reputation for our placement year, matching dedicated students with a variety of organisations in the UK and overseas.

The range of uses for computers is increasing all the time – from smart phones and games consoles to aircraft flight control systems, super computers and global telecommunications.

This programme develops the skills and expertise needed to design computer systems, covering up-to-date detailed knowledge of computer hardware and software including electronics, communications systems and interface technologies.

We base our courses on leading-edge research, which is vital in a field that advances at such a fast pace. Our courses are designed with strong industrial input and therefore students graduate with excellent career prospects.

The School of Engineering and Digital Arts has always scored well in the National Student Survey, coming top three times in the last six years. We recently celebrated over 30 years’ continuous accreditation by the Institution of Engineering and Technology (IET).

Independent rankings

Electronic and Electrical Engineering at Kent scored 90.7 out of 100 in The Complete University Guide 2019.

In the National Student Survey 2018, over 86% of final-year Electronic and Electrical Engineering students who completed the survey, were satisfied with the overall quality of their course.

Of Electronic and Electrical Engineering students who graduated from Kent in 2017 and completed a national survey, over 94% were in work or further study within six months (DLHE).

Teaching Excellence Framework

All University of Kent courses are regulated by the Office for Students.

Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.

Please see the University of Kent's Statement of Findings for more information.

TEF Gold logo

Course structure

The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.  

On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘elective’ modules from other programmes so you can customise your programme and explore other subjects that interest you.

Foundation year

This programme is for students who do not have the qualifications needed for direct entry to Stage 1 of our degree programmes. It covers electronics, computing, physics and mathematics.

If you successfully complete the foundation year, you can go on to take either the Computer Systems Engineering programmes mentioned above or Electronics and Communications Engineering.

Compulsory modules currently include Credits

This module introduces students to the mathematics of calculus and its applications in engineering. Examples classes are provided to support the student learning.

View full module details
15

This module introduces students to the basic principles of electro-magnetism and electrostatics that are necessary in order to understand modern electronic and communications systems. Practical work and examples classes are included to assist the student learning.

View full module details
15

Electrical Circuits

Electrical quantities, circuit concepts, circuit calculations.

Engineering Mechanics

Mechanical quantities, static and dynamic laws and examples of their application in electronic and mechanical engineering

Practical work and examples classes are included to assist the student learning

View full module details
15

This module introduces students to basic electronic components and circuits. By the end of this module students should be able to understand the operation of some important electronic circuits.

It also extends the work on mechanics to include rotary and oscillatory motion, basic mechanical properties of materials and fluid statics.

View full module details
15

This module consists of a series of lectures, laboratory sessions and example classes. Topics covered include logic gates and their associated arithmetic with applications. It also introduces materials used in electronic and mechanical engineering and their practical applications. Elementary alternating current circuit theory is also introduced.

View full module details
15

In order to support laboratory experiments to be performed in other modules a short series of lectures on report writing and experimental error analysis is included.

A series of lectures will introduce a microcontroller and its programming language in an informal way. The aim is to enable the student to input and output signals to a microcontroller to control simple actuators. The programming skills will be developed in a series of non-assessed and assessed laboratory based assignments where students will be presented with a pre-written programme and they will be asked to make changes to achieve a change in its operation.

Also included in this module is an assigned mini project that can either be electronic or mechanical in nature depending on the preference of the student. Students are expected to build, test and report on the operation of the project and make suggestions for its improvement.

A short series of lectures which introduce students to University study.

View full module details
15

This module introduces fundamental methods needed for the study of mathematical subjects at degree level.

a) Functions and graphs: plotting, roots, intercepts, turning points, area (graphical methods), co-ordinate geometry of straight lines, parallel and perpendicular lines, applications to plots of experimental data, quadratics, introduction to the trigonometric functions

b) Trigonometry: radians, properties of sine and cosine functions, other trigonometric functions, compound angle formulae and subsequent results, solving trigonometric equations

c) Geometry: circles and ellipses, right-angled triangles, SOHCAHTOA, trigonometric functions, inverse trigonometric functions, sine and cosine rule, opposite and alternate angle theorems, applications to geometry problems

d) Vectors: notion of a vector, representation of vectors, addition, subtraction and scaling, magnitude, scalar product, basis vectors in 2 and 3 dimensions

View full module details
15

  • Arithmetic

    Calculations

    Significant figures

    Standard form

    Fractions

    Simplification of fractions

    Percentages and fractional changes

    Indices

    Logarithmic and exponential functions

  • Algebra

    Basic rules (operations and indices).

    Solving equations (substitution and order of operation).

    Changing subject of a formula

    Inverse operations

    Rules of indices

    Long division

    Expansion and Factorisation

    Quadratic equations

    Solving linear and simultaneous equations

    Partial fractions

    Binomial Theorem

    View full module details
  • 15

    Stage 1

    Compulsory modules currently include Credits

    This module provides an introduction to object-oriented software development. Software pervades many aspects of most professional fields and sciences, and an understanding of the development of software applications is useful as a basis for many disciplines. This module covers the development of simple software systems. Students will gain an understanding of the software development process, and learn to design and implement applications in a popular object-oriented programming language. Fundamentals of classes and objects are introduced and key features of class descriptions: constructors, methods and fields. Method implementation through assignment, selection control structures, iterative control structures and other statements is introduced. Collection objects are also covered and the availability of library classes as building blocks. Throughout the course, the quality of class design and the need for a professional approach to software development is emphasised and forms part of the assessment criteria.

    View full module details
    15

    The module provides techniques to design electronic circuits containing active and passive components and to appreciate the power issues and frequency response of circuits containing reactive elements. An introduction will be given to Electromagnetism for engineering purposes. An understanding of the fundamentals of Electronic Engineering is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures.

    View full module details
    15

    The module provides an introduction to the basic knowledge required to understand, design and work with basic electronic circuits and the basic principles underlying the process of Electronic Engineering. No previous electronics experience is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures.

    View full module details
    15

    The module provides a first attempt to translate a problem into a technical solution. An understanding of the relevant software and electronic hardware options to create a functional solution centred around a microcontroller will be developed. Design skills will be applied to define and fabricate the physical solution informed by the original requirement. An understanding of the fundamentals of Electronic Engineering is assumed and the module proceeds via lectures supported by supervision and technical advice. It is designed to give practical experience of the concepts introduced in the lectures of the prerequisite module.

    View full module details
    15

    This module provides an introduction to contemporary digital systems design. Starting with the fundamental building blocks of digital systems the module outlines both theoretical and practical issues for implementation. Practical work includes the use of digital simulation and analysis software for implementing real-world problems.

    View full module details
    15

    Mathematics is the fundamental language of engineering, allowing complex ideas to be formulated and developed. This course provides the sound basis of mathematical techniques and methods required by almost all other modules in the department's engineering courses. Topics covered include functions, set theory, complex numbers, calculus, linear algebra, statistics and probability. The lectures are supported by assessed examples classes, taken in small groups.

    View full module details
    15

    This module expands the introductory mathematics covered in EL318 and provides students with the appropriate mathematical tools necessary for the further study of electronic, mechanical and computer systems. The main emphasis of the course is in applied calculus, which isused to solve real-world engineering problems.. The lectures are supported by assessed examples classes, taken in small groups.

    View full module details
    15

    Mechanics:

    Forces, moments and Equilibrium of rigid bodies

    Dynamics of linear and rotary motion

    Angular momentum, work and energy

    Elementary stress-strain analysis

    Engineering Design:

    Transformation of a client requirement into an engineering design statement

    Decomposition and evaluation of design requirements

    Consideration of the human and ergonomic factors in the design process

    CAD based drawings and models via CAD tools

    Realisation of CAD models using computer numerical control manufacturing machines

    View full module details
    15

    Teaching and assessment

    Teaching includes lectures, coursework and laboratory assignments, examples classes where you develop your problem-solving skills and regular staff ‘surgeries’. Practical work is carried out in air-conditioned laboratories, with state-of-the-art equipment and outstanding IT infrastructure.

    Stage 1 modules are assessed by coursework and examination at the end of the year. Stage 2 and 3 modules, with the exception of the final-year project, are assessed by a combination of coursework and examination. All years include project work to replicate industrial practice and develop skills to maximise employability.

    Contact Hours

    For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours.  The precise breakdown of hours will be subject dependent and will vary according to modules.  Please refer to the individual module details under Course Structure.

    Methods of assessment will vary according to subject specialism and individual modules.  Please refer to the individual module details under Course Structure.

    Programme aims

    The programme aims to:

    • educate students to become engineers, well-equipped for professional careers in development, research and production in industry and universities, and capable of meeting the challenges of a rapidly changing subject
    • produce computer systems engineers with specialist skills in hardware and software engineering, prepared for the complexities of modern computer system design
    • enable students to satisfy the professional requirements of the IET
    • provide academic guidance and welfare support for all students
    • create an atmosphere of co-operation and partnership between staff and students, and offer students an environment where they can develop their potential.

    Learning outcomes

    Knowledge and understanding

    You gain knowledge and understanding of:

    • mathematical principles relevant to computer systems engineering
    • scientific principles and methodology relevant to computer systems engineering
    • advanced concepts of embedded systems, signals and image processing, control, computer communications and operating systems
    • the value of intellectual property and contractual issues
    • business and management techniques which may be used to achieve engineering objectives
    • the need for a high level of professional and ethical conduct in computer systems engineering
    • current manufacturing practice with particular emphasis on product safety and EMC standards and directives
    • characteristics of materials, equipment, processes and products
    • appropriate codes of practice, industry standards and quality issues
    • contexts in which engineering knowledge can be applied.

    Intellectual skills

    You develop the following intellectual abilities:

    • the ability to analyse and offer solutions to hardware and software engineering problems using appropriate mathematical methods
    • the ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of computer systems engineering
    • use of engineering principles to analyse key computer systems engineering processes
    • the ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
    • the ability to apply and understand a systems approach to computer systems engineering problems
    • the ability to investigate and define a problem and identify constraints including cost drivers, economic, environmental, health and safety and risk assessment issues
    • the ability to use creativity to establish innovative, aesthetic solutions while understanding customer and user needs, ensuring you address all aspects of the problem including production, operation, maintenance and disposal
    • the ability to demonstrate the economic and environmental context of the engineering solution.

    Subject-specific skills

    You develop subject-specific skills including:

    • the use of mathematical techniques to analyse and solve hardware and software problems
    • the ability to work in an engineering laboratory environment and to use electronic and workshop equipment, and CAD tools to create electronic circuits
    • the ability to work with technical uncertainty
    • the ability to apply quantitative methods and computer software relevant to computer systems engineering in order to solve engineering problems
    • the ability to implement software solutions using a range of structural and object- oriented languages
    • the ability to design hardware or software systems to fulfil a product specification and devise tests to appraise performance
    • awareness of the nature of intellectual property and contractual issues and an understanding of appropriate codes of practice and industry standards
    • the ability to use technical literature and other information sources and apply it to a design
    • the ability to apply management techniques to the planning, resource allocation and execution of a design project and evaluate outcomes
    • the ability to prepare technical reports and presentations

    Transferable skills

    You gain transferable skills including:

    • the ability to generate, analyse, present and interpret data
    • the use of information and communications technology
    • personal and interpersonal skills and working as a member of a team
    • effective communication (in writing, verbally and through drawings)
    • effective learning for the purpose of continuing professional development
    • critical thinking, reasoning and reflection
    • how to manage time and resources within an individual project and a group project.

    Careers

    Graduate destinations

    The School of Engineering and Digital Arts has an excellent record of student employability. Previous graduates have gone on to careers in:

    • design of electronic and computer systems
    • software engineering
    • real-time industrial control systems
    • computer communications networks.

    Other graduates have gone on to work for a range of organisations including:

    • BAE Systems
    • RAF
    • CISCO
    • Defence Science and Technology Laboratory (MOD).

    Help finding a job

    The School of Engineering and Digital Arts holds an annual Employability and Careers Day where you can meet local and national employers and discuss career opportunities. Ongoing support is provided by the School's dedicated Employability Officer.

    The University also has a friendly Careers and Employability Service which can give you advice on how to:

    • apply for jobs
    • write a good CV
    • perform well in interviews.

    Career-enhancing skills

    Alongside specialist skills, you also develop the transferable skills graduate employers look for, including the ability to:

    • think critically 
    • communicate your ideas and opinions 
    • work independently and as part of a team.

    You can gain extra skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

    Professional recognition

    Our programme is accredited by the Institution of Engineering and Technology (IET), which enables fast-track career progression as a professional engineer.

    Entry requirements

    Home/EU students

    The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice. 

    It is not possible to offer places to all students who meet this typical offer/minimum requirement.

    New GCSE grades

    If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.

    Qualification Typical offer/minimum requirement
    A level

    DDD

    GCSE

    C in Mathematics and Science

    Access to HE Diploma

    The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. 

    If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above.

    BTEC Level 3 Extended Diploma (formerly BTEC National Diploma)

    The University will consider applicants holding BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF; OCR) on a case-by-case basis. Please contact us for further advice on your individual circumstances.

    International Baccalaureate

    34 points overall or 12 at HL

    International students

    The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country. 

    However, please note that international fee-paying students cannot undertake a part-time programme due to visa restrictions.

    If you need to increase your level of qualification ready for undergraduate study, we offer a number of International Foundation Programmes.

    Meet our staff in your country

    For more advice about applying to Kent, you can meet our staff at a range of international events.

    English Language Requirements

    Please see our English language entry requirements web page.

    Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme. 

    General entry requirements

    Please also see our general entry requirements.

    Fees

    The 2019/20 annual tuition fees for this programme are:

    UK/EU Overseas
    Full-time £9250 £19000

    For details of when and how to pay fees and charges, please see our Student Finance Guide.

    For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

    Your fee status

    The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

    General additional costs

    Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

    Funding

    University funding

    Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

    Government funding

    You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.

    Scholarships

    General scholarships

    Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

    The Kent Scholarship for Academic Excellence

    At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

    The scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages

    The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either mathematics or a modern foreign language. Please review the eligibility criteria.

    The Key Information Set (KIS) data is compiled by UNISTATS and draws from a variety of sources which includes the National Student Survey and the Higher Education Statistical Agency. The data for assessment and contact hours is compiled from the most populous modules (to the total of 120 credits for an academic session) for this particular degree programme. 

    Depending on module selection, there may be some variation between the KIS data and an individual's experience. For further information on how the KIS data is compiled please see the UNISTATS website.

    If you have any queries about a particular programme, please contact information@kent.ac.uk.