Chemistry

Chemistry - BSc (Hons)

UCAS code F107

This is an archived page and for reference purposes only

2018

Chemistry is a fascinating area of science and central to understanding the world around us. Studying at Kent, you are involved in live research and develop skills that can be applied to some of the key challenges of the 21st century – such as human health and the world’s increasing energy demands.

Overview

At the School of Physical Sciences, we have a strong teaching record in analytical chemistry and we are proud to link our world-leading research on materials chemistry to our undergraduate programmes. All practical classes take place in our newly refurbished laboratories, where you use the latest equipment.

This programme is fully accredited by the Royal Society of Chemistry (RSC).

Our degree programme

Chemistry at Kent is a distinctive programme and includes a set of ‘chemistry in context’ modules where you apply your knowledge to specific case studies. For example, in our first-year Disasters module, you choose a chemical disaster and use your understanding of chemical phenomenon to formulate a disaster management plan.

Your first year modules introduce you to the broad base of knowledge on which chemistry is founded. In your second year, you further develop your knowledge of organic, inorganic and physical chemistry and improve your practical laboratory skills.

In your final year, alongside compulsory modules you can choose to take a module focusing on DNA analysis or fires and explosions. You also complete research project in computational chemistry, solid-state chemistry or synthetic (organic) chemistry.

Placement year

It is possible to take this degree with a placement year and gain valuable work experience. For details, see Chemistry with a Year in Industry.

MChem programme

You also have the option of doing a four-year MChem programme and working as part of a research group doing cutting-edge work. For details, see Chemistry - MChem.

Foundation year

If you do not have the grades you need to study on our BSc degree, you could take Chemistry with a Foundation year.

Study resources

We recently invested £10 million in our laboratories and improved our general study spaces. Facilities to support chemistry include a full characterisation suite for materials containing:

  • three powder diffractometers
  • a crystal diffractometer
  • X-ray fluorescence
  • instruments to measure magnetic and transport properties at 4K and up to 7T
  • a Raman spectrometer
  • two scanning electron microscopes (SEM)
  • gas chromatography–mass spectrometry (GC-MS)
  • high-performance liquid chromatography (HPLC) system
  • atomic absorption spectrometry (AAS) equipment
  • Fourier transform infrared spectrometer (FTIR).

Extra activities

The School of Physical Sciences is home to an international scientific community of chemistry, forensic science, physics and astronomy students. Numerous formal and informal opportunities for discussion make it easy to participate in the academic life of the School. All students have an academic adviser and we also run a peer mentoring scheme.

You are encouraged to participate in conferences and professional events to build up your knowledge of the science community and enhance your professional development. The School also works collaboratively with business partners, which allows you to see how our research influences current practice.

You can also take part in:

  • the School’s Physical Sciences Colloquia, a popular series of talks given by internal and external experts on relevant and current topics
  • the student-run chemistry society, Chemsoc, which organises talks with top industry professionals, practical demonstrations and social events.

Independent rankings

Chemistry at Kent was ranked 8th for course satisfaction in The Guardian University Guide 2018.

In the National Student Survey 2017, over 89% of final-year Chemistry students were satisfied with the overall quality of their course.

Teaching Excellence Framework

Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.

Please see the University of Kent's Statement of Findings for more information.

TEF Gold logo

Course structure

The course structure below gives a flavour of the modules and provides details of the content of this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.

In Stage 1-2, all modules listed below are compulsory.

In Stage 3, you take five compulsory modules as well as doing a chemistry research project. You also choose one further module from the following: PS601 - Fires and Explosions; PS637 - DNA Analysis & Interpretation.

Stage 1

Modules may include Credits

This module introduces and revises the basic concepts of chemistry that underpin our understanding of the stability of matter. This starts with introducing atomic and molecular structure, with a focus on understanding the electronics of bonding in the molecular compounds around us. You will then study the laws governing the behavior of gases and origins of other interactions that hold solids and liquids together, alongside describing some of their basic properties such as conductivity, viscosity, and the way in which ions behave in solution. In the final aspect of this module we cover the critical role thermodynamics plays in determining the stability of matter, including the fundamental laws of thermodynamics and the importance of equilibrium in reversible reactions.

View full module details
15

This module reintroduces the basic concepts of organic chemistry that are vital in understanding pharmaceutical and biological substances. You will study the basics of the chemistry of carbon, the element critical to underpinning life, including its basic building blocks and functional groups. We also cover the mechanisms by which basic organic reactions including elimination, substitution and oxidation processes occur. This module concludes with studying aromatic compounds and chirality, which crucially influence how organic molecules interact within living systems.

View full module details
15

Chemistry in context

Using an organic chemistry perspective, you will study the fundamentals of biochemistry, the chemistry of life, including enzyme reactions, protein chemistry, DNA, lipids and carbohydrates. These topics are underpinned by the role chemical phenomena such as thermodynamics and intermolecular interactions play in a biological context. We then explore the nature and discovery of drugs, how they work, and the potential effects of their misuse.

View full module details
15

Chemistry in context:

In this module, you will study particular cases in which disasters occur (for example, explosions, volcanic eruptions, exposure to chemical warfare agents and accidents in the chemical industry), either as a result of human participation or in the natural course of events. We will explore how science, and in particular chemistry, is integral to the understanding and mitigation of such events. You will then focus on an aspect particular disaster and give a short oral presentation on it alongside a written report and press release. Note: this module constitutes the writing component required by the Royal Society of Chemistry.

View full module details
15

Introduction to the concept of programming languages, and to Fortran 90 in particular.

Introduction to the UNIX operating system: including text editors, the directory system, basic utilities, the edit-compile-run cycle.

Introduction to Fortran 90, including the use of variables, constants, arrays and the different Fortran data types; iteration (do-loops) and conditional branching (if statements).

Modular design: subroutines and functions, the intrinsic functions.

Simple input/output, such as the use of format statements for reading and writing, File handling, including the Fortran open and close statements, practical read/write of data files. The handling of character variables.

Programming to solve physical/chemistry problems.

View full module details
15

This module will introduce you to core scientific chemical concepts including chemical equations and stoichiometry, kinetics and activation energies for reactions in solutions and acid and base chemistry. You will learn the theoretical background and terminology needed to understand these core concepts, along with the mathematical skills required by a practicing chemist. Hands-on laboratory experimentation is a key component of this module, teaching you the basic methodology used for understanding the physical chemistry of reactions, with a particular focus on their kinetics and thermodynamics. As part of this you will be taught how to effectively use fundamental laboratory equipment and instrumentation (Lab component).

View full module details
15

In this module you will be introduced to the key concept of periodicity and how, through a deeper knowledge of the periodic table, chemists are able to understand and predict the chemical properties, reactivity and compounds formed by the elements. You will also be introduced to redox chemistry, which plays a key role in the reactivity of the elements and the forms in which they are found.

This module also has a significant focus on experimental chemistry. You will therefore complete a set of laboratory practicals, enabling you to develop the laboratory skills and knowledge to work safely in an experimental environment and carry out fundamental organic and analytical chemistry procedures, including basic spectroscopy. This will be supplemented by teaching you the essentials of laboratory safety awareness and the skills needed to write scientific reports, including ways to clearly present data arising from experiments. To enable you to achieve this you will learn, through examples of physical science applications, the basic mathematics required to understand, plot and analyse graphical information, including differentiation and integration. This will be supported by lessons in how to use simple computer programs for drawing molecular and crystal structures and carry out basic calculations on the energy levels of chemical systems (Lab component.)

View full module details
30

Stage 2

Modules may include Credits

You will study organic reactions and materials encountered in organic chemistry in depth. In particular, you will look at the organic chemistry of functional groups such as alcohols, ethers, carbonyl, amines and alkyl halides. You will also look at carbon-carbon forming reactions and strategies for synthesising target molecules. (Lab component.)

View full module details
15

You will develop an understanding of the theory and application of techniques for chemical identification. You will study symmetry, nuclear magnetic resonance (NMR), gas chromatography (GC), mass spectrometry (GCMS), infrared and Raman spectroscopy, spectrophotometry/fluorimetry, basic diffraction methods and electron spin resonance.

View full module details
15

Chemistry in context

Plastics, Liquid Crystals and Organic LEDs are ubiquitous in everyday life; your smartphone, tablet or television screen is likely an Organic LED. Here, the chemistry of these common materials is explored. Specifically, the structure and nomenclature of organic and inorganic macromolecules are covered, as well as polymer syntheses. The physical, chemical and mechanical properties of polymers, liquid crystals and light emitting materials are dissected and device structure of organic LEDs is deconvoluted.

(Lab component.)

View full module details
15

The speed (kinetics) and energetics (thermodynamics) of a reaction are of central importance in chemistry. Here, we use thermodynamics and kinetics to predict whether a particular reaction would take place and its likely product yield. We also cover equilibrium constants, electrochemical cells, colligative properties, including elevation and depression of melting and boiling points, zero, first, second and third order reaction kinetics and statistical thermodynamics. Experiments are included to help to cement understanding. (Lab component.)

View full module details
15

This module will deepen your understanding of the fascinating world of quantum mechanics and symmetry. We explore how this gives rise to quantisation and selection rules, and go on to apply this to spectroscopic methods to understand structure and bonding including: rotational (microwave) spectroscopy, vibrational (IR and Raman) spectroscopy and electronic transitions (UV-vis, PES). The lab course will give you hands on experience of some of these quite abstract concepts, and will allow you to apply your spectroscopic skills to real chemical problems. (Lab component.)

View full module details
15

The arrangement of atoms and defects in a solid governs its properties. Here, we cover the crystal structures and phase diagrams of solid materials. Bonding in solids is discussed, including metallic, ionic and molecular crystals, band theory, defects and non-stoichiometry. You will be introduced to the synthesis, properties and applications of a wide range of materials and their solid state reactions. Applications covered include catalysis, energy materials such as fuel-cells and Li-ion batteries, superconductivity and semiconductors and nanomedicine. (Lab component.)

View full module details
15

Here, you will explore the chemistry of the d- and f-block elements, including their electronic and colour properties as well as their magnetic behaviour, both in lectures and workshops and also practically through a lab component. Environmental chemistry is of growing importance and this module will also equip you to understand environmental concerns such as toxicity, bioavailability and environmental mobility. (Lab component.)

View full module details
15

Trace Analysis:

Trace analysis: definitions, methods and problems. Sampling, storage and contamination. Quality control. Random and systematic errors; statistical treatment of data. Accuracy and precision. Signal/noise ratio. Sensitivity and detection limits. Choice of methods for trace analysis.

Units, dimensions, exponentials and logarithms:

Decimal places and significant figures. Units and dimensions: SI units, dimensional analysis. Manipulation of exponentials and logarithms. Power laws. Exponential decay and half-life. Beer-Lambert law, Arrhenius equation, Boltzmann distribution, Gaussian functions.

Chemical Arithmetic:

Balancing chemical equations. Amount of substance, molar quantities, concentration and volumetric calculations, gravimetric analysis, gas pressures and volumes.

Equilibrium calculations, strong and weak electrolytes. pH, acid-base equilibria, buffer solutions. Solubility. Chemical kinetics: reaction rates, rate constants and orders of reaction.

Probability and Statistics:

Elementary probability, probability spaces, Venn diagrams, independence, mutual exclusion, expectation. Quantitative treatment of the effect of evidence: Bayes’ Theorem and conditional probability Samples and populations, mean, standard deviation, moments, standard error. Probability distributions: binomial, normal, poisson. Limiting cases. Use of normal tables. Significance testing and confidence limits. Hypothesis testing. The chi-squared test. A brief look at probability-based arguments used by expert witnesses, recent controversies and challenged convictions. Regression and correlation

Laboratory work:

Analysis of alkaloids by HPLC

Accelerant analysis by gas chromatography

Analysis of metal cartridge cases and counterfeit coins using X-ray fluorescence spectroscopy

Determination of copper by atomic absorption spectroscopy

Quantifying substances in a mixture using UV-visible spectroscopy

Isolation & purification of caffeine from tea leaves

View full module details
15

Stage 3

Modules may include Credits

Here, you will be introduced to a variety of modern techniques used to understand the structure, properties and potential applications of materials. Analytical techniques include: atomic emission/absorption spectrometry, high-performance liquid chromatography (HPLC), capillary zone electrophoresis (CZE), ion chromatography, mass spectrometry and gas chromatography (GCMS), electro-analytical chemistry, optical microscopy, electron microscopy.

View full module details
15

Here, you will undertake a lab-based research project. You will choose one of three areas: Computational Chemistry, Solid-State Chemistry or Synthetic (Organic) Chemistry. You will then independently plan and execute your experiments or simulations (computational chemistry) with guidance from an academic supervisor. The module provides framework research training.

View full module details
30

‘Nanoscience will sculpt the scientific landscape of the 21st century.’ Here, you will be exposed to the synthesis of nanomaterials spanning nanoparticles, nanorods and porous architectures. You will learn how to control their shape, size, functionalisation and stabilisation. Solid-state reactions are introduced as well as high-pressure synthesis to prepare novel materials. The wealth of applications and potential applications of nanomaterials will be covered spanning: catalysis and quantum dots to nanomedicine. You will also synthesise nanomaterials in our chemistry laboratory. (Lab component.)

View full module details
15

The nature of chemical bonding changes as you move across and down the periodic table. In this module, you will study how and why this bonding changes and how we can use our understanding of this to understand the structure and reactivity of many classes of compounds. This is coupled to advanced analytical techniques for probing these often complex and flexible structures. The concepts developed then feed into the reactivities underpinning modern Organometallic catalysis, moving from pure fundamentals to application and showing how they let us understand the cutting edge of modern research and industrial syntheses.

View full module details
15

A key component to chemical education is the exposure to more advanced aspects of chirality, and chemical transformations towards the synthesis of simple targets. Concepts relating to the synthesis of natural and unnatural target molecules through organic chemical transformations are essential to the students’ chemical repertoire. In-depth exposure to chirality, exposure to asymmetric chemical transformations, carbon-carbon bond-forming reactions, and their application in targeted small molecule synthesis will be covered.

View full module details
15

The module lectures will cover the following topics:

• Historical methods

• DNA sample collection, processing and storage

• DNA theory

• DNA databases and statistical interpretation

• Quality Assurance, management and control

• Legal aspects

• Forensic case studies

• Future trends

View full module details
15

Physics and chemistry of fires and explosions:

Fire and arson – occurrence and importance. Combustion – definitions. Thermodynamics and enthalpy. Flammability limits, flash point, fire point, ignition temperature. Pyrolysis of wood and plastics. Fuels and accelerants. Propagation and spread of fires. Sampling and laboratory analysis of fire scene residues.

Explosions – definitions. Vapour phase and condensed phase explosions. Detonation and deflagration. High and low explosives. Primary and secondary high explosives. Molecular design of explosives. Survey of important explosives. Stoichiometry, oxygen balance, gas volumes, thermodynamics and enthalpy. Sampling and laboratory analysis of explosives residues. Preventative detection of explosives in contexts such as airports.

Fires:

Fire dynamics. Propagation and spread of fires – flames, fire types, flashover. Fire investigation. Forensic Science Service procedures at the scene. Damage observation and assessment. Fire and smoke patterns. Sources of ignition. Injuries and fatalities. Evidence recovery: sampling and laboratory analysis. Establishing the origin : the seat of the fire. Finding the cause: natural, accidental, negligent or deliberate? Indicators of arson. Evidence procedures. Case studies.

Explosions:

Control of the explosion scene and procedures for recovery of evidence. Damage observation and assessment. The work of the Forensic Explosives Laboratory. Identification of explosives: organics and inorganics. Bulk analysis. Trace analysis of explosives: recovery, extraction and analysis of samples. Physical evidence: detonators. Preventative detection. Precursor identification. Explosives evidence in court: legal definitions and procedures. Terrorism. Case studies.

View full module details
15

Teaching and assessment

There are approximately eight one-hour lectures each week, and in addition laboratory classes, project work and problem solving seminars.

Assessment is by a combination of written examinations, continuous assessment and other assignments. You must pass the Stage 1 examinations in order to go on to Stage 2. The year in industry mark also counts towards your final degree result.

Coursework assessments include practical laboratory skills, presentation skills as well as essay and report writing.

Programme aims

The programme aims to:

  • instil a sense of enthusiasm for chemistry, an appreciation of its application in different contexts and involve students in an intellectually stimulating and satisfying experience of learning and studying
  • provide a broad and balanced foundation of chemical knowledge and practical skills
  • provide access to as wide a range of students as practicable
  • develop in students the ability to apply their knowledge and skills to the solution of chemical science problems and to be able to solve theoretical and practical problems in chemistry
  • impart practical skills including the knowledge, understanding and ability to assess safety in the laboratory environment
  • develop a range of generic skills, of value in chemical and non-chemical employment
  • provide a stimulating, research-active environment in which students are supported and motivated to achieve their academic and personal potential
  • enable students to graduate with an understanding of scientific methodology, the ability to use this in the solution of problems in and outside of a laboratory environment, and the ability to undertake and report on an experimental investigation using such methodology
  • foster an appreciation of the importance and sustainability of the chemical sciences in an industrial, academic, economic, environmental and social context
  • provide students with the knowledge and skills to gain graduate-level employment or to pursue further studies.


    Learning outcomes

    Knowledge and understanding

    You gain knowledge and understanding of:

    • core and foundation scientific physical, biological, and chemical concepts, terminology, theory, units, conventions, and laboratory practise and methods in relation to the chemical sciences
    • areas of chemistry including properties of chemical elements, states of matter, organic functional groups, physiochemical principles, organic and inorganic materials, synthetic pathways, analytical chemistry, medicinal chemistry, biochemistry, fires and explosions
    • developments at the forefront of some areas of chemical sciences.

    Intellectual skills

    You gain the following intellectual abilities:

    • the ability to understand essential facts, concepts, principles and theories relating to the subject and to apply this knowledge to the solution of qualitative and quantitative problems
    • the ability to recognise and analyse problems and plan strategies for their solution by the evaluation, interpretation and synthesis of scientific information and data
    • the ability to use computational methods for the practical application of theory and to use information technology and data-processing skills to search for, assess and interpret chemical information and data
    • a knowledge of essay writing and presenting scientific material and arguments clearly and correctly, in writing and orally, to a range of audiences and the ability to communicate complex scientific argument to a lay audience.

    Subject-specific skills

    You gain subject-specific skills in the following:

    • the safe handling of chemical materials, taking into account their physical and chemical properties, including specific hazards associated with their use and risk-assessment of such hazards
    • the ability to carry out documented standard laboratory procedures involved in synthetic and analytical work in relation to organic and inorganic systems. Skills in observational and instrumental monitoring of physiochemical events and changes and the systematic and reliable documentation of the above. Operation of standard analytical instruments employed in the chemical sciences
    • the ability to collate, interpret and explain the significance and underlying theory of experimental data, including an assessment of limits of accuracy
    • the ability to implement research projects including competence in the design and execution of experiments.

    Transferable skills

    You gain transferable skills in the following:

    • communication, both written and oral
    • to be able to undertake further training of a professional nature
    • problem-solving in relation to qualitative and quantitative information, extending to situations where evaluations have to be made on the basis of limited information
    • numeracy and computational skills, including such aspects as error analysis, order-of-magnitude estimations, correct use of units and modes of data presentation
    • information-retrieval skills, in relation to primary and secondary information sources, including online computer searches
    • knowledge of IT such as word-processing and spreadsheet use, data-logging and storage, internet communication
    • interpersonal skills, relating to the ability to interact with other people and to engage in team working within a professional environment
    • time-management and organisational skills, as evidenced by the ability to plan and implement efficient and effective modes of working. Self-management and organisational skills with the capacity to support life-long learning
    • study skills required continuing professional development and professional employment.

    Careers

    Graduate destinations

    The chemical industry is central to the world economy, which means chemistry graduates have a wide range of employment options open to them. Kent science graduates have an excellent employment record with recent graduates going into areas including:

    • research and development
    • contract laboratories
    • material and pharmaceutical industries
    • the oil industry.

    Help finding a job

    The School of Physical Sciences has its own Employer Engagement Officer who works for South East Physics Network helping to provide industrial opportunities for students throughout their time at Kent.

    The University has a friendly Careers and Employability Service which can give you advice on how to:

    • apply for jobs
    • write a good CV
    • perform well in interviews.

    Career-enhancing skills

    You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as:

    • excellent communication skills
    • work independently or as part of a team
    • the ability to solve problems and think analytically
    • time management.

    You can also enhance your degree studies by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

    Independent rankings

    Of Chemistry students who graduated from Kent in 2016, 91% were in work or further study within six months (DLHE).

    Entry requirements

    Home/EU students

    The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice. 

    It is not possible to offer places to all students who meet this typical offer/minimum requirement.

    New GCSE grades

    If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.

    Qualification Typical offer/minimum requirement
    A level

    BBB including B in Chemistry, including the practical endorsement of any science qualifications taken

    GCSE

    C in Mathematics

    Access to HE Diploma

    The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. 

    If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above.

    BTEC Level 3 Extended Diploma (formerly BTEC National Diploma)

    The University will consider applicants holding/studying BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science subject at 180 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances.

    International Baccalaureate

    34 points overall or 15 at HL including Chemistry 5 at HL and Mathematics 4 at HL or SL

    International students

    The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.

    If you need to increase your level of science ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.

    Meet our staff in your country

    For more advice about applying to Kent, you can meet our staff at a range of international events.

    English Language Requirements

    Please see our English language entry requirements web page.

    Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme. 

    General entry requirements

    Please also see our general entry requirements.

    Fees

    The 2018/19 annual tuition fees for this programme are:

    UK/EU Overseas
    Full-time £9250 £18400

    For details of when and how to pay fees and charges, please see our Student Finance Guide.

    For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

    Your fee status

    The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

    General additional costs

    Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

    Funding

    University funding

    Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

    Government funding

    You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.

    Scholarships

    General scholarships

    Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

    The Kent Scholarship for Academic Excellence

    At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

    For 2018/19 entry, the scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages

    The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either Mathematics or a Modern Foreign Language. Please review the eligibility criteria.

    The Key Information Set (KIS) data is compiled by UNISTATS and draws from a variety of sources which includes the National Student Survey and the Higher Education Statistical Agency. The data for assessment and contact hours is compiled from the most populous modules (to the total of 120 credits for an academic session) for this particular degree programme. 

    Depending on module selection, there may be some variation between the KIS data and an individual's experience. For further information on how the KIS data is compiled please see the UNISTATS website.

    If you have any queries about a particular programme, please contact information@kent.ac.uk.